
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

1

Achieving Real-Time Spectrum Sharing in 5G Underlay
Coexistence with Channel Uncertainty

Shaoran Li, Student Member, IEEE, Yan Huang, Member, IEEE, Chengzhang Li, Student Member, IEEE,
Y. Thomas Hou, Fellow, IEEE, Wenjing Lou, Fellow, IEEE, Brain A. Jalaian, Member, IEEE, and

Stephen Russell

Abstract—Underlay coexistence is a spectrum efficient mechanism to roll out 5G picocells within a macrocell on the same spectrum.
Due to a lack of cooperation between the primary users (PUs) in the macrocell and secondary users (SUs) in the picocells, it is
impossible to have complete knowledge of channel conditions between them. Under such a circumstance, chance-constrained
programming (CCP) has been shown to be an ideal optimization tool to address such a channel uncertainty. However, solutions to CCP
are computationally intensive and cannot meet 5G’s timing requirement (125 µs). To address this problem, we propose a novel
scheduler called GPU-based Underlay Coexistence (GUC) with the goal of finding an approximate solution to CCP in real-time. The
essence of GUC is to decompose the original optimization problem into a large number of small subproblems that are suitable for
parallel computation on GPU platforms. By selecting a subset of promising subproblems and solving them in parallel with fast
algorithms, we are able to leverage GPU parallel computing and develop a real-time solution. Through extensive experiments, we show
that GUC meets the 125 µs requirement while achieving 90% optimality on average.

Index Terms—5G, spectrum sharing, underlay, coexistence, channel uncertainty, real-time, GPU, chance-constrained programming,
scheduling, power control.

F

1 INTRODUCTION

Underlay coexistence is an innovative technique to roll out
5G deployment for picocells. It achieves spectrum efficiency
by having secondary users (SUs) share the same spectrum
with the primary users (PUs) [2]. A typical scenario is
to deploy picocells within a macrocell, where the users
in the macrocell and picocells are considered as PUs and
SUs respectively [3]. To achieve harmonious coexistence,
SUs should control their transmission powers such that
the aggregated interference to each PU is below a given
threshold. Under such a model, knowledge of interference
channel gains from the SUs to the PUs is needed for power
control. However, in the absence of feedback from the PUs,
the SUs can only measure these interference channel gains
based on overhearing known signals (e.g., pilot signals)
from the PUs’ transmissions and channel reciprocity. As
a result, accurate knowledge of instantaneous interference
channel gains and their distributions are hardly available.
Thus, one can at best obtain limited knowledge of these
interference channel gains through long-term measurements
(continuous tracking) and work with their estimated means,
covariances, and boundaries, etc.

Under this circumstance, there are two applicable ap-
proaches: worst-case optimization and chance-constrained

Manuscript received March 4, 2021; revised August 29, 2021; accepted
October 7, 2021. Date of publication XXX, 2021. Some early results of this
research were supported in part by U.S. Army Research Laboratory under
Cooperative Agreement No. W911NF1820293. The work of Y.T. Hou was
also supported in part by NSF under grant 1642873, Virginia Commonwealth
Cyber Initiative (CCI), and Virginia Tech Institute for Critical Technology and
Applied Science (ICTAS). An abridged version of this paper appeared in the
Proc. IEEE GLOBECOM, Waikoloa, HI, Dec. 2019 [1].
S. Li, C. Li, Y.T. Hou, and W. Lou are with Virginia Tech, Blacksburg, VA
24061.
Y. Huang is with NVIDIA Corp., Santa Clara, CA 95051.
B.A. Jalaian and S. Russell are with CCDC Army Research Laboratory,
Adelphi, MD 20783.

programming (CCP). It is well-known that the performance
of worst-case optimization is overly conservative since it
only focuses on the rarely appeared worst cases (usually
associated with certain boundaries) [4]. In contrast, CCP
resolves this issue by allowing occasional violations of the
interference threshold as long as such threshold violations
happen below a small probability. CCP exploits the fact
that in reality, occasional threshold violations are usually
not fatal or even tolerable by the PUs for at least three
reasons. First, when such violations occur, the error correc-
tion codes (e.g., Turbo code and LDPC code) at the physical
layer may recover the transmitted bits that are in error (to
some extent) [5]. Second, for media-rich applications (e.g.,
audio and video streaming), error control and concealment
techniques at the application layer are widely available in
existing multimedia standards [6]. Third, human perception
systems (hearing and vision) are quite resilient to occasional
transmission errors or packet losses [7]. By exploiting these
possibilities and allowing some occasional violations, CCP
promises to achieve much higher spectrum efficiency in the
presence of channel uncertainty.

In this paper, we employ CCP to study underlay coex-
istence between 5G picocells (for SUs) and a macrocell (for
PUs) on the same spectrum [8, 9] with strict timing require-
ment [10]. Specifically, we are interested in maximizing the
spectrum efficiency of SUs in picocells while ensuring the
violation probability of PUs’ interference threshold stays
below a given bound. This means that we need to prop-
erly allocate the sub-channels to the SUs and control their
transmission powers, which is nontrivial in the presence of
channel uncertainty.

Further, we must solve the optimization problem within
125 µs, the smallest scheduling time interval in 5G physical
layer transmission [11, 12]. Though there are several prior
efforts employing CCP to study underlay problems (see,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

2

e.g., [13–16]), their typical running times are from hundreds
of milliseconds to tens of seconds, which are orders of mag-
nitude larger than the 125 µs real-time requirement. Note
that the term “real-time” in this paper refers to the actual
running time (as measured by a wall clock) of an algorithm
on a hardware platform. Under such a quantitative objective
measure, traditional complexity analysis (in the form of big
O(·)) will not be much useful as it is not directly tied to
wall-clock time. Even an algorithm with O(1) complexity
may still have a computation time larger than our timing
requirement.

To address this real-time challenge, we propose a novel
parallel algorithm and implement it on GPU platforms.
Though GPU has been used in other problems to provide
strict timing guarantee such as macrocell Proportional Fair
(PF) scheduler [17] and MIMO beamforming [18], these
GPU solutions cannot be directly applied to our problem
due to some fundamental differences in problem settings
and mathematical structures. To the best of our knowledge,
there is no work to date that uses GPU to address 5G
underlay coexistence problem via CCP in order to meet the
125 µs timing requirement.

The main contributions of this work are summarized as
follows:

• We propose and implement a real-time solution for
5G underlay coexistence that meets the 125 µs re-
quirement in 5G standards. Our proposed solution
maximizes the spectrum efficiency through schedul-
ing and power control of SUs while keeping the
probability of violating PUs’ interference threshold
under a given target.

• Our proposed solution – GPU-based Underlay Co-
existence (GUC) first decomposes the original prob-
lem into a large number of subproblems. Instead of
solving all the subproblems, we only select a subset
of promising subproblems where each subproblem
corresponds to a fixed sub-channel allocation among
SUs. Then these selected subproblems are solved in
parallel based on closed-form starting points and
scaling-based local search. Finally, the feasible solu-
tion (sub-channel allocations and transmission pow-
ers of SUs) with the highest objective value will be
chosen as the final solution.

• We implement our GUC algorithm on an off-the-
shelf Nvidia Telsa V100 GPU using CUDA pro-
gramming tool. To conserve computation time, we
optimize each step in our implementation, includ-
ing proper thread allocations, minimizing memory
access time, and employing parallel reduction, etc.

• Through comprehensive experiments, we demon-
strate that GUC maximizes the spectrum efficiency
of SUs in real-time while guaranteeing probabilistic
violation of PUs’ interference threshold. Specifically,
our measured GUC computation time meets the 125
µs timing requirements, which is at least 104 times
faster than commercial solvers (e.g., Gurobi on CPU).
GUC is also able to achieve 90% optimality on aver-
age.

We organize the remainder of this paper as follows. In
Section 2, we review related work. In Section 3, we introduce

the 5G underlay coexistence model and formulate the opti-
mization problem. In Section 4, we present our algorithm
design. In Section 5, we present how we implement our
algorithm on GPU platforms. In Section 6, we present results
from our experiments. Section 7 concludes this paper.

2 RELATED WORK

We review related work on CCP and GPU, with a focus on
their applications in wireless communications.
CCP CCP is typically used to address uncertainties and
provide probabilistic guarantees. Existing CCP works in
wireless communications have studied problems in under-
lay coexistence [13–16], OFDM scheduling [19], D2D com-
munication [20, 21], and QoS guarantee in wireless video
streaming [22]. However, a common issue with these works
is that the computation time of the proposed solutions is
orders of magnitude larger than the “real-time” requirement
in our problem, i.e., 125 µs. So none of the proposed solu-
tions are useful to address our problem.
GPU GPU has been used to accelerate computation time
due to its massive parallel processing capability. In wireless
communications, GPU has been applied to PF scheduling
[17] at a base station (BS), MIMO beamforming [18], Age
of Information (AoI) scheduling [23], channel coding [24],
and signal processing [25, 26]. Most notably, in [17], we
developed a GPU-based solution for 5G PF scheduler that
consists of problem decomposition, selection of a subset of
subproblems, and solving these subproblems in parallel.
These ideas laid the groundwork on how to apply GPU
to address complex optimization problems in real-time.
However, each problem is unique and the detailed design
in each of these steps is not trivial and must be carefully
crafted for the underlying problem based on its unique
mathematical structures and physical meanings. Likewise,
the implementation efforts of a proposed algorithm must be
custom designed otherwise it will unlikely be able to meet
the desired timing requirement.

3 SYSTEM MODEL AND PROBLEM FORMULATION

Consider a two-tier setting where several 5G picocells are
deployed inside a macrocell following an underlay coexis-
tence (see Fig. 1). Users in the macrocell and picocells are
considered as PUs and SUs respectively. Both the macrocell
and the picocells share the same spectrum. The BS in a
picocell is likely to be deployed as part of a set-up box
inside a residential unit [27, 28]. Since multiple picocells
are sharing the same spectrum with the macrocell and the
number of users in a picocell is much fewer that that in
a macrocell, it is therefore reasonable to have a picocell
to occupy only a fraction of the macrocell’s spectrum in
a non-overlapping fashion from neighboring picocells (to
avoid inter-picocell interference). This scheme is known as
fractional frequency reuse in the literature (see, e.g., [29, 30]).

For a specific picocell, due to its small footprint, there
can only be a few PUs nearby. In underlay coexistence,
the burden of interference control solely rests upon the sec-
ondary network, i.e., picocells in our setting. To differentiate
multiple PUs in the absence of any explicit cooperation,
the SUs can exploit the orthogonal pilots that they hear

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

3

PU

Macro eNB

Picocell

Picocell

Picocell

Picocell

SU

Pico eNB

Data Transmission Interference to PUs

PU

SU
SU

Fig. 1. Network topology of picocells within one macrocell

from the PUs, or some location techniques based on existing
spectrum sensing algorithms [31, 32].

It is easy to see that the most challenging interference
control scenario occurs when the SUs are transmitting to
the pico BS (uplink) and the PUs are receiving from the
macro BS (downlink). We will focus on this scenario in this
paper and our proposed solution can be easily extended
to other transmission scenarios. Each picocell operates in
a time-slotted system and the time domain is divided into
small Transmission Time Intervals (TTIs). In each TTI, a pico
BS gathers the channel conditions from the SUs and then
runs a scheduling algorithm for the SUs’ resource allocation
and power control. These decisions will be sent to the
SUs through the control channel immediately and will be
applied for SUs’ uplink transmissions in the next TTI. Thus,
the time for running the scheduling algorithm at the pico
BS is at most one TTI. Since the neighboring picocells are
operating independently on non-overlapping frequencies,
we will focus on one picocell and maximize the spectrum
efficiency for the SUs inside the picocell while carefully
control their interference to each nearby PU. Under CCP,
this means that the violation probability of PUs’ interference
thresholds will not exceed a given bound.

The notations used in this paper are summarized in
Table 1. Let N and J denote the number of SUs in the
picocell and its nearby PUs, respectively. Suppose the trans-
mission bandwidth allocated to this picocell is divided into
M sub-channels. Based on cellular terminology, we call
each sub-channel in one TTI as a resource blocks (RB).
Clearly, there are M RBs per TTI. We use the weighted
sum of channel capacity as our objective for each TTI. This
gives much flexibility to define fairness by the operator.
For example, if the weights are static and assigned to the
SUs once and for all (no change from TTI to TTI), then
this is equivalent to assigning priority to each user. As
another (more sophisticated) example, if the weights are
dynamically changed per TTI, such as based on a SU’s
long-term data rate, then this is equivalent to the well-
known Proportional Fair (PF) scheduler [17]. Recall that

TABLE 1
Notations

Symbol Definition
gmij Interference channel gain from SU i to PU j on RB m

gj A column vector:
[
g11j , g

2
1j , · · · , gM1j , g12j , · · · , gMNj

]T
gj Mean of channel gain vector gj

hmiB Transmission channel gain from SU i to its pico BS on
RB m

Ij Interference threshold for PU j
J Number of nearby PUs
J The set of integers from 1 to J : {1, 2, 3, · · · , J}
M Number of RBs for transmission in the picocell
M The set of integers from 1 to M : {1, 2, 3, · · · ,M}
N The number of SUs in the picocell
N The set of integers from 1 to N : {1, 2, 3, · · · , N}
pmiB Transmission power from SU i to pico BS on RB m
p A column vector:

[
p11B, p

2
1B, · · · , pM1B , p

1
2B, · · · , pMNB

]T
Pmax
i Maximum transmission power of SU i over all RBs

Rj Covariance matrix of channel gain vector gj

wi Weight of SU i
xmiB A binary variable indicating whether or not SU i

transmits on RB m
εj Risk level (probability upper bound) of violating PU j’s

interference threshold Ij

our problem is to design a scheduling algorithm that runs
within each TTI to determine how RBs are to be allocated
and the corresponding transmission powers for the SUs in
the next TTI. In other words, the available running time for
the proposed scheduling algorithm must be no greater than
one TTI (as low as 125 µs in 5G).

For the considered TTI,1 denote a binary variable xmiB as
whether or not SU i will transmit on RB m after scheduling,
i.e.,

xmiB =

{
1 if SU i will transmit on RB m ,
0 otherwise .

(1)

Here “B” stands for the pico BS.
In single user orthogonal frequency-division multiple

access (OFDMA), each RB can be assigned to at most one
SU. Thus, we have constraints for RB allocations given as∑

i∈N
xmiB ≤ 1 (m ∈M) , (2)

whereM denotes the set of RBs {1, 2, · · · ,M}.
Denote pmiB as the transmission power of SU i on RB

m and let Pmax
iB represents the total transmission power

limit of SU i across all RBs. The constraints for scheduling
transmission powers and device power limits are given by

0 ≤ pmiB ≤ xmiBPmax
iB (i ∈ N , m ∈M) , (3)∑

m∈M
pmiB ≤ Pmax

iB (i ∈ N) . (4)

where N is the set {1, 2, · · · , N}.
Denote gmij as the interference channel gain from SU i to

PU j on RB m and let Ij be the interference threshold for
PU j. Under CCP, the interference control from the SUs to
the PUs can be formulated as chance constraints, given by

P

{∑
i∈N

∑
m∈M

gmij p
m
iB ≤ Ij

}
≥ 1− εj (j ∈ J) , (5)

1. For ease of exposition, we drop the notation of time (for each TTI)
when there is no confusion.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

4

where J = {1, 2, · · · , J}, P{·} denotes probability, and εj
is the risk level (probability upper bound) for violation of in-
terference threshold Ij . Clearly, a higher εj leads to a larger
tolerance to violation of interference threshold Ij and hence
higher spectrum efficiency. A typical value of εj ranges from
0.01 to 0.5 depending on the requirement of PU j. In (5), pmiB
is an optimization variable while interference channel gain
gmij is modeled as a random variable. Constraints (5) state
that the aggregate interference from the SUs to PU j over
all RBs should stay below threshold Ij with a probability no
smaller than 1−εj . For generality, we assume only the mean
and covariance of gmij ’s are known since these statistics are
rather time-invariant compared to the instantaneous values
of gmij ’s.

For constraints (5), we can rewrite it in the matrix form

Pgj∼(gj ,Rj)

{
gTj p ≤ Ij

}
≥ 1− εj (j ∈ J) , (6)

where superscript “T” denotes transposition. p is an MN ×
1 column vector consists of MN transmission powers from
the SUs (over all RBs) to the pico BS, and is given as

p =
[
p11B, · · · , pM1B, p

1
2B, · · · , pM2B, · · · , p1NB, · · · , pMNB

]T
. (7)

gj is an MN × 1 random column vector, and is defined as

gj =
[
g11j , · · · , gM1j , g12j , · · · , gM2j , · · · , g1Nj , · · · , gMNj

]T
, (8)

which represents MN random interference channel gains
from the SUs (over all RBs) to PU j. gj (a MN × 1 column
vector) and Rj (a MN ×MN matrix) are the known mean
and covariance of gj , respectively.

By normalizing the bandwidth of each RB to 1 unit, we
have the following problem formulation

(P1) max
xmiB ,p

m
iB

∑
i∈N

∑
m∈M

wilog2(1 + hmiBp
m
iB)

s.t. RB allocations (2) ,
Uplink transmission powers (3) ,
Device power limits (4) ,
Violation probability guarantees (6) ,
xmiB ∈ {0, 1}, pmiB ≥ 0 ,

where wi is the given weight of SU i in current TTI. hmiB is
the transmission channel gain of SU i toward the pico BS
on RB m, which includes the effects of interference from the
macro BS to the pico BS and thermal noise at the pico BS.

Though we know the mean and covariance of gj , its dis-
tribution has an infinite number of possibilities. Therefore,
P1 is intractable due to chance constraints (6).

4 GUC: A NOVEL PARALLEL ALGORITHM

In this section, we present a novel scheduling and power
control algorithm to solve P1. Our whole design for P1 is
called GUC (short for GPU-based Underlay Coexistence),
which consists of two parts: GUC algorithm design in this
section and the corresponding implementation efforts in
Section 5.

4.1 Reformulation of chance constraints

The main difficulty of P1 lies in chance constraints (6). Thus,
a necessary step to solve P1 is to substitute (6) with deter-
ministic constraints and obtain a deterministic optimization
problem. The state-of-the-art technique to perform such a
substitution is called Exact Conic Reformulation (ECR) [16],
which is able to replace the intractable chance constraints
(6) with convex deterministic constraints without any relax-
ations. Comparing with other approaches such as Cheby-
shev inequality and Bernstein Approximation, ECR requires
fewer assumptions and offers better performance. Using
ECR, it can be shown that constraints (6) are mathematically
equivalent (w.r.t. p) to the following deterministic constrains
[16] √

1− εj
εj

√
pTRjp+ gTj p ≤ Ij (j ∈ J) . (9)

ECR guarantees that the optimization space of p in (9) is
the same as that of (6), which means this reformulation
is exact. It also means each equality in (9) is achievable
for some distributions of gj where the threshold violation
probability is exactly εj . For all other distributions of gj , the
threshold violation probability will be smaller than εj . We
refer interested readers to [16] for more details of ECR.

Replacing (6) with (9) in P1, we have a deterministic
maximization problem as the following

(P2) max
xmiB ,p

m
iB

∑
i∈N

∑
m∈M

wilog2(1 + hmiBp
m
iB)

s.t. RB allocations (2) ,
Scheduling transmission powers (3) ,
Device power limits (4) ,
Interference power control from ECR (9) ,

xmiB ∈ {0, 1}, pmiB ≥ 0 .

P2 belongs to MINLP. One could try to use a commercial
solver such as Gurobi to solve P2. But we find that its
computational time is on the order of seconds (see Section 6)
and thus it cannot meet the 125 µs timing requirement. The
fundamental issue is that they require sequential iterations,
which is time-consuming.

4.2 GUC Algorithm Design

Our algorithm design is to exploit parallelism to reduce
computation time. The general idea of solving a complex
optimization problem is to decompose the original problem
into a large number of small subproblems that can be solved
in parallel. If the number of subproblems is too large to
be solved in parallel, we will need to select a subset of
these subproblems to solve (with perhaps some loss in
performance). After the subset of subproblems is solved,
we can pick the best feasible solution in the hope that its
performance is close to the optimal solution.

Although the main idea of GUC algorithm design is
not hard to understand, how to accomplish each step is far
from trivial and constitutes the main efforts in our algorithm
design.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

5

4.2.1 Decomposition of P2
In this section, we show how to decompose P2 into parallel
subproblems. In P2, there are two sets of decision variables:
the binary RB allocations xmiB’s and the continuous trans-
mission powers pmiB’s. Clearly, xmiB’s are dominant variables
and should be considered first. It is also easier to perform
decomposition since xmiB’s are binary variables.

Our decomposition of P2 is based on enumerating all
feasible RB allocations and correspondingly setting xmiB’s
values to 0 or 1. Once xmiB’s are fixed under a feasible RB
allocation, we have a subproblem instance from P2 that
involves only continuous variables pmiB’s. By (2) (i.e., a RB
can only be allocated to at most one SU), a feasible solution
should have no more than one non-zero element in set
{xm1B, x

m
2B, · · · , xmNB}. Denote πm as the SU that is allocated

with RB m. Then we have πm ∈ N for m ∈ M; xmiB = 1 if
i = πm and xmiB = 0 otherwise. Denote a 1 ×M row vector
π = {π1, π2, · · · , πM} as the set of SUs to which the M RBs
are assigned. Clearly, for m ∈ M, pmiB > 0 if i = πm and
pmiB = 0 otherwise. Note that some of the elements in π can
be the same, meaning that multiple RBs are allocated to a
SU. Thus, an instance of subproblem (for a given π) is:

(P3) max
pmπmB

∑
m∈M

wπm log2(1 + hmπmBp
m
πmB)

s.t.
∑

m∈M,πm=i

pmπmB ≤ Pmax
iB (i ∈ π) , (10)√

1− εj
εj

√
pTπRπjpπ + gTπjpπ ≤ Ij (j ∈ J) ,

(11)
pmπmB ≥ 0 (m ∈M) . (12)

The M × 1 column vector pπ = [p1π1B
, p2π2B

, · · · , pMπmB]
T

represents the transmission powers corresponding to a
given RB allocation π. Denote a M × 1 random column
vector gπj = [g1π1j

, g2π2j
, · · · , gMπmj]

T , then let gπj (a M × 1
column vector) and Rπj (a M × M matrix) be the mean
and covariance of gπj respectively. Clearly, gπj and Rπj are
truncated from gj and Rj . Such truncation is performed by
removing those elements in gj and Rj corresponding to the
positions of zero values in p. After truncation, it is easy to
show the following result hold:

pTπRπjpπ = pTRjp , g
T
πjpπ = gTj p . (13)

Given (13), constraints (10) and (11) are equivalent to con-
straints (4) and (9) respectively as we only deal with those
non-zero transmission powers pmπmB’s. Thus, a feasible solu-
tion to P3 is also a feasible solution to P2 and P1.

4.2.2 Select Subproblems
In our original problem, there are M RBs and each RB has
N possible RB allocations, shown as a column of N green
squares in the left part of Fig. 2. Thus, the total number of
possible π is NM (enumerating all feasible assignments of
xmiB’s). Due to our strict timing requirement, we can only
compute a subset of subproblems in parallel. Denote Kx as
the number of selected subproblems, where Kx � NM . In
the rest of this section, we show how to select these Kx

subproblems by identifying a promising subproblem space
and random sampling inside this space.

M

N

M

N

π3π1

π2

πM

M

N

Original Space Promising Space

Subproblem 2

!

! ! ! !

!

!

!

!

! ! ! !!
! ! ! !!

!

!

!

!

!

!

!

!

π3

π2π1

πM

M

N

Subproblem 1

! ! ! !!

!

!

!

!

π1

πMπ3π2

M

N

Subproblem Kx

! ! ! !!

!

!

!

!

!

Fig. 2. Select Kx subproblems by random sampling in a promising
space

Identifying a Promising Space A promising space can be
defined as a subspace (within the original problem space)
that contains a set of subproblems with reasonably good
(acceptable) solutions. It is possible that the optimal solution
may fall outside this promising space. But as long as the best
feasible solution inside this promising space is reasonably
good (acceptable), it will serve our purpose.

To identify a promising space, we propose to limit the
number of possible RB allocations for each RB from N to a
smaller number, denoted as D, i.e., D < N . Thus, we need
to design a metric to “measure” how good an RB allocation
is before solving the problem. Clearly, this metric should
be based on the given parameters such as wi’s, hmiB’s and
gmij ’s. Intuitively, we can consider allocating RB m to SU i a
good allocation if wi and hmiB are relatively high, and gmij is
relatively small. To exploit this idea, we define a metric dmiB
to evaluate each scheduling decision xmiB as following

dmiB =
wih

m
iB

umij
(i ∈ N , m ∈M) , (14a)

umij =
∑
j∈J

{√
1− εj
εj

√
||(Rj)((i−1)M+m)∗||1 + gmij

}
.

(14b)

where (Rj)((i−1)M+m)∗ is the ((i − 1)M + m)-th column
of Rj , || · ||1 is the L1−norm, and gmij is the mean of gmij . In
(14a), wihmiB is the gradient of the objective function w.r.t. pmiB
at pmiB = 0; umij is related to the mean of interference channel
gain gmij , which has a similar form with (9). Taking both into
considerations, we use a simple division to define dmiB and
obtain the metric in (14a).

Then the SUs sm1 , s
m
2 , · · · , smD are considered promising

for RB m’s allocation. Denote a set SmD = {sm1 , sm2 , · · · , smD}
and RB m can only be allocated to the SUs in set SmD ,
i.e., πm ∈ SmD (instead of N previously). This process of

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

6

identifying a promising set is shown in the middle part of
Fig. 2 where each column (corresponding to one RB) only
has D possible allocated SUs (instead of N). We perform
the above procedure for each RB in parallel and obtain its
corresponding promising set SmD . As each RB only has D
possible allocations, we have a promising space S consisting
of DM subproblems, i.e.,

π ∈ S = S1D × S2D × · · · × SMD , (15)

where “×” denotes Cartesian product.
Clearly, a larger D expands the promising space while

a smaller D shrinks the promising space. We propose to
determine a suitable value of D based on historical results
that can be easily applied in practice. To determine a suitable
D, we first need to solve P2 in the original space for the
optimal solution. Then we solve P2 optimally in the promis-
ing space under different D’s and compare the objective
ratios with the optimal solution. The objective ratio is a non-
decreasing function of D. By assessing the objective ratios in
the promising space, we can pick the smallest D that offers
acceptable (or near-optimal) performance.
Random Sampling If Kx < DM , we need to perform
sampling to obtainKx subproblems. Otherwise, we can skip
this step. At this point, there areDM events in the promising
space S and each event corresponds to one subproblem
instance. For an event ϕ = {ϕ1, ϕ2, · · · , ϕM} ∈ S , we define
dϕ = d1ϕ1B

·d2ϕ2B
· · · dMϕMB . Then we assign event ϕ with the

following probability

P{ϕ} = dϕ∑
φ∈S

dφ
for ϕ ∈ S . (16)

The denominator in (16) is to normalize dϕ so that it is
a valid probability assigned to event ϕ. We then perform
Kx samples following the probabilities given in (16) and
obtain Kx events (subproblems). As shown in the right part
of Fig. 2, we obtain Kx subproblems and each subproblem
has fixed RB allocations to the SUs.

4.2.3 Solve the Subproblems
In this subsection, we will show how to solve each sub-
problem P3 within a limited number of operations to re-
duce computation time. The subproblems are independent
among each other and hence we can solve the subproblems
in parallel without any information exchange. Due to the
same mathematical structure of the subproblems, we only
need to design one algorithm for all sub-problems, i.e.,
single-instruction multiple data (SIMD). In a subproblem P3,
there are M continuous decision variables pmπmB’s and P3 is
a convex optimization problem. A conventional approach
to solving such a convex problem is by gradient-based
iterations. However, such an approach usually involves
tens of iterations to converge and cannot meet the 125 µs
timing requirement. To overcome this challenge, we have to
sacrifice optimality in favor of approximate solutions that
are fast and have performance close to that of the optimal
solution.

We notice that for the three set of constraints (10)–(12) in
P3, constraints (12), the nonnegativity of decision variables
pmπmB’s, are easy to meet and thus we should mainly focus
on constraints (10) and (11). Since these two constraints

only have linear and quadratic terms regarding pmπmB’s, we
propose to solve P3 based on decent starting points and a
simple scaling-based local search, given as below.
Starting Points A starting point of P3 consistsM transmis-
sion powers for the scheduled SUs, which is in the form of
{p1π1B, p

2
π2B, · · · , pMπMB}. For good performance, we use Kp

starting points (each with M transmission powers) for each
subproblem. Note that this means we have a total of KxKp

starting points since we have chosen Kx subproblems in
the previous step. Since we can handle those starting points
in parallel, this will only slightly increase the computation
time.

For a specific subproblem (with fixed π), the k-th (k =
1, 2, · · · ,Kp) starting point contains M transmission pow-
ers, in the form of pkπ =

[
p1kπ1B, p

2k
π2B, · · · , pmkπmB, · · · , pMk

πMB

]T
.

We set pmkπmB as

pmkπmB =
wπmh

m
πmB∑

m∈M
wπmh

m
πmB
·

∑
j∈J

Ij∑
j∈J

umπmj
+ δvmk (17a)

=

dmπmB
∑
j∈J

Ij∑
m∈M

wπmh
m
πmB

+ δvmk (m ∈M) , (17b)

where vmk is a uniformly distributed random variable and δ
is a small positive number that ensures all the Kp starting
points are within a sphere. The first fraction in (17a) is
proportional to the weight wπm and transmission channel
gain hmπmB while the second fraction in (17a) is the aver-
age transmission power for all SUs regarding interference
control. Note that the intermediate results of dmπmB and
wπmh

m
πmB are already calculated in (14) during the process

of finding a promising space. Therefore, (17b) is easy to
implement since Ij and δ are given constants.

However, the transmission powers given in the starting
points (17) have no guarantee of feasibility nor performance.
Thus, GUC uses scaling-based local search to refine each
starting point from (17) to guarantee feasibility while im-
proving performance if possible, as detailed below.
Scaling-based Local Search For simplicity, we drop the
notation of k in the rest of this section. This local search
is done by three scaling procedures regarding (10), (11) and
(10) again, described as the following.
First scaling based on (10). The i-th constraint in (10) states
that the total transmission powers from SU i cannot exceed
its device limit. Thus, the idea of the first scaling is to
scale down the transmission powers if the corresponding
SU exceeds its device power limit.

Given the transmission power obtained from the starting
points (17), we can calculate the current total transmission
power from SU i as

P total
iB =

∑
m∈M, πm=i

pmπmB (i ∈ π) . (18)

For SU i, if P total
iB > Pmax

iB , we scale down the trans-
mission powers from SU i such that the total transmission
power from SU i is equal to its device limit. Otherwise,
we don’t do anything. Thus, the first scaling for pmπmB is
summarized as

pmπmB = pmπmB ·min

{
1,
Pmax
πmB

P total
πmB

}
(m ∈M) . (19)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

7

After the first scaling, (10) is guaranteed to be feasible
since no SU will exceed its device limit. Let π′ = {i : i ∈
N , P total

iB = Pmax
iB } be the set of SUs who has already reached

their device limit, which will be used in the second scaling.
Second scaling based on (11). The j-th constraint in (11)
represents the transmission opportunities of SUs allowed
by PU j. Notice that the objective function monotonically
increases regarding the transmission powers, so we would
like to increase these transmission powers while ensuring
constraints (11) hold. Thus, in the second scaling, we will not
only focus on the feasibility of constraints (11) but also try to
improve the objective value by increasing the transmission
powers, if possible.

To derive the second scaling based on constraints (11),
we calculate the current interference level from the SUs in
π (denoted as Îj) and the average interference from the SUs
in π′ (denoted as Î ′j), given as

Îj =

√
1− εj
εj

√
pTπRπjpπ + gTπjpπ , (20a)

Î ′j =
∑
πm∈π′

gmπmjp
m
πmB , (20b)

where gmπmj is the mean of gmπmj (the m-th element of gmπmj).
Note that Î ′j < Îj holds.

Based on Îj from (20a) and Î ′j from (20b), we obtain
the scaling factor λj based on the j-th constraint of (11) as
following

λj =


Ij

Îj
if Îj ≥ Ij ,

Ij − Î ′j
Îj − Î ′j

if Îj < Ij .

(21)

We perform the second scaling by using the minimum of
λj for all J scaling factors as

pmπmB =

{
pmπmB ·min {1, λ1, · · · , λJ} if πm ∈ π′

pmπmB ·min {λ1, · · · , λJ} otherwise

(m ∈M) .

(22)

Note that there are two possible cases regarding the sec-
ond scaling: the transmission powers are scaled up if Îj < Ij
holds for every j ∈ J and are scaled down otherwise. If we
are able to scale up the transmission powers, the objective
value will increase. In other words, we are making use of the
transmission opportunities allowed by the PUs. Moreover,
we will only scale up the pmπmB’s from the SUs who have not
reached their device limit (from π\π′) since the SUs in π′

have already reached their transmission power limits.
In both cases, the outcome of the second scaling has the

following property.

Property 1. After the second scaling based on (22), the
transmission powers satisfy constraints (11).

Proof Let pπ be the transmission powers before the second
scaling and define function fj(pπ) as

fj(pπ) =

√
1− εj
εj

√
pTπRπjpπ + gTπjpπ . (23)

Clearly, we have fj(pπ) = Îj based on the definition of Îj
in (20a). Since the scaling factor in the second scaling (22) is
the minimum of all λj ’s, to prove Property 1, we only need
to show constraints (11) are satisfied for each λj defined in
(21). In other words, we need to show fj(qπ) ≤ Ij where
qπ = [q1π1B, q

2
π2B, · · · , qMπmB]

T and

qmπmB =

{
pmπmB ·min {1, λj} if πm ∈ π′

pmπmB · λj otherwise
(m ∈M) .

(24)
Consider the following two cases regarding λj .
Case 1. 0 < λj ≤ 1. This happens when Îj ≥ Ij and we
have

fj(qπ) = fj(λjpπ) = λjfj(pπ) = Ij . (25)

Case 2. λj > 1. This happens when Îj < Ij and we have

fj(qπ) =

√
1− εj
εj

√
qTπRπjqπ +

∑
πm∈π\π′

gmπmBq
m
πmB + Î ′j

≤ λj

√1− εj
εj

√
pTπRπjpπ +

∑
πm∈π\π′

gmπmBp
m
πmB


+ Î ′j

= λj(fj(pπ)− Î ′j) + Î ′j
= Ij

Combining both cases, we see fj(qπ) ≤ Ij hold for each λj ,
and thus Property 1 is proved. �

Property 1 means that constraints (11) are no longer
our concern for feasibility. However, since the transmission
powers can be scaled up, it is possible that the total trans-
mission powers from a SU will exceed its device limit after
the second scaling. In other words, constraints (10) may be
violated and we need the third scaling.
Third scaling based on (10) To satisfy constraints (10),
we will repeat the first scaling given by (18) and (19). A
key observation is that the third scaling will not increase
transmission powers pmπmB’s and hence constraints (11) re-
main feasible. Further, constraints (12) only state the non-
negativity of pmπmB’s, which holds trivially. Thus, we have
reached a feasible solution from a starting point for the
current subproblem and it is also a feasible solution for P2
and P1. Then we can calculate the objective value under this
feasible solution.

By performing the above procedure for all the Kx sub-
problems (each with Kp starting points) in parallel, we have
KxKp feasible solutions (with their objectives values) for P2
and P1.

4.2.4 Obtain the Final Solution
Given the KxKp feasible solutions, we will compare their
objective values and the one with the highest objective value
will be the final solution from GUC algorithm. As we shall
show through experimental results in Section 6, this final
solution achieves 90% optimality on average.

4.3 Summary of GUC algorithm design
A summary of GUC algorithm design is given in Fig. 3.
The input includes network settings P max

iB , Ij , εj ; long-term

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

8

GUC:
1: Input: Network settings P max

iB , Ij , εj , wi; long-term
statistics gj , Rj ; and short-term parameters hmiB .

2: Output: A feasible solution with xmiB and pmiB.
3: Generate Kx subproblems
4: Calculate dmiB for each corresponding xmiB in parallel

based on (14).
5: Find D promising sets of xmiB and obtain the promis-

ing space S .
6: Obtain Kx samples based on the probabilities in (16)

and fix xmiB correspondingly.
7: Solve the subproblems in parallel
8: Obtain Kp starting points of pmπmB for each subprob-

lem by (17).
9: Apply the scaling-based local search for each start-

ing point based on (19), (22) and (19).
10: Calculate the objective value for each feasible solu-

tion.
11: Obtain the Final Solution
12: Compare the objective values from KxKp solutions

and find the one with the highest objective value.

Fig. 3. Summary of GUC algorithm design.

statistics gj ,Rj ; and short-term parameters wi, hmiB . The
output is the best feasible solution with RB allocations xmiB’s
and transmission powers pmiB’s.

Note that the information exchange of P max
iB , Ij , εj , wi is

only done once during call setup time (or very rarely during
the connection). Information exchange of gj and Rj is on
the order of at least sub-seconds and hence does not pose
any challenge. As for hmiB , it can be updated as frequently
as per TTI (125 µs), which is the same as CSI reporting
as supported by current 5G standards. Thus, the overhead
of information exchange in our design does not go beyond
what is required in today’s 5G standards.

Note that GUC is a fully centralized design (at BSs)
since we believe centralized algorithms are more suitable
for our problem than distributed algorithms. In particular,
to be 5G-compliant, a centralized algorithm would fit more
naturally than a distributed one. Further, in 5G, a centralized
algorithm (such as GUC) that runs at pico BSs will enjoy
more powerful computing resources and is not as energy-
constrained as a distributed algorithm that runs on UEs. In
terms of communication overhead, centralized algorithms
only need information collection and results broadcasting.
This overhead (both volume and required time) is much
smaller and predictable than that in distributed algorithms
[33].

5 GPU IMPLEMENTATION

In this section, we present our implementation efforts of
GUC on NVIDIA GPU platforms. To meet our real-time
requirement (125 µs), we need to efficiently allocate the
available resources on GPU platforms in the implementa-
tion. In the rest of this section, we first offer an overview of
GPU platform and describe key issues in implementation.
Then we present the details of our implementation.

5.1 Overview of GPU and Key Issues

The most distinctive feature of GPU is its large number
(∼ 103) of processing cores, which allows GPU to solve a
large number of problems in parallel. GPU is also suitable
for our problem due to its small size, low cost per floating
point operations per second (FLOPS) [34, 35], and high
flexibility of programming such as CUDA from NVIDIA
[36]. Because of these advantages, we believe that GPU is
the most suitable platform to implement GUC at a BS.

From an implementation perspective, our job is to make
sure the GPU implements the operations of our GUC algo-
rithm while minimizing its overall execution time. In GPU
terminology, the basic unit to control the GPU operation
is called a Kernel (a.k.a. Kernel function). We may have
multiple kernels, which can be executed on GPU in arbitrary
orders (sequential, parallel, or mixed) depending on the de-
sign. By defining the kernels and properly organizing their
launching orders, we can implement the GUC algorithm.

The total time consumption on GPU consists of process-
ing time and data access time from the memories. So the
key issues in our implementations are: 1) How to reduce the
processing time by optimizing thread allocations? 2) How
to reduce data access time by proper memory management?
Threads allocations The minimum execution unit on GPU
is called thread. A thread block is defined as a group of threads
that share memory and computation resources. One thread
block can have a maximum of 1024 threads. Since a kernel is
executed as a grid of thread blocks, we need to decide how
many thread blocks a kernel needs, how many threads for
each thread block, and what are the processes of threads.

As for the processes of threads, we need to ensure the
GUC algorithm is correctly implemented on GPU. Since
threads operate in parallel, sometimes we need to pause
certain threads until their required data has been processed
by other threads and up-to-date. This can be done by thread
synchronization. But thread synchronization slows down
parallel computation and increases the overall execution
time. Thus, we need to minimize the number of synchro-
nizations as much as possible.
Memory management There are several types of mem-
ories on a GPU, each with a different performance. In
our implementation, we use two types of memories in
GPU called global memory and shared memory. Comparing to
global memory, shared memory has a significantly shorter
access time and can be broadcast to up-to 32 threads within
one thread block. The downside of shared memory is its
limited volume and no direct external access (i.e., cannot
communicate directly with CPU memory). Thus, we need
to carefully choose the memory type for each data in our
implementation to reduce memory access time.

5.2 Implementation Details

Figure 4 shows a flow chart of our implementation, which
includes five steps: two data transfers (between GPU and
CPU) and three Kernels. Note that although the GUC algo-
rithm also has three steps, the processes inside these three
steps have been regrouped into three Kernels to minimize
time consumption.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

9

!
"#$%&'$()*+,

!
"#$%&'$()*+!"

!

!

"-.&)/
)'&01)&2)(+,3

4+5/)2670+%&'*8982:+9%.;)

<
=
>
+<
('
$
.
(+?

)
*
'
&0

1)&2)(+@3

4+A82/+B-)+$)9B+9'(#6'2+

+++.;&'99+.((+B-&)./+$(';C9

D=>+?)*'&0

4+?'E)+B-)+$)9B+9'(#6'2+

+++7&'*+<=>+B'+D=>

!

D=>+?)*'&0

PCIe

PCIe

1)&2)(+F3

4+G.2/'*+9.*%(82:

4+"'(E)+9#$%&'$()*9

4+A82/+B-)+$)9B+9'(#6'2+

+++H8B-82+).;-+B-&)./+$(';C

I-&)./+J(';C+,

4+?'E)+%.&.*)B)&9+

+++7&'*+D=>+B'+<=>

!
!

"-.&)/
)'&0

I-&)./+J(';C+F

!

"-.&)/
)'&0

I-&)./+J(';C+#

!

"-.&)/
)'&0

I-&)./+J(';C+,

!

"-.&)/
)'&0

I-&)./+J(';C+F

!

"-.&)/
)'&0

I-&)./+J(';C+1KLF

!

"-.&)/
)'&0

I-&)./+J(';C+,

!

"#$%&'$()*+F

Fig. 4. Implementation of GUC algorithm on GPU

5.2.1 Move parameters from CPU to GPU

At the beginning of our implementation, we need to trans-
fer data (i.e., network parameters, long-term settings, and
short-term parameters) from CPU memory to GPU global
memory. Note that only short-term parameters wi and hi
need to be transferred to the GPU memory in each TTI while
the long-term parameters Rj and gj can be stored in the
GPU memory for use over TTIs until updated. Since we are
using off-the-shelf GPU, such data transfer will go through
a PCIe interface between CPU and GPU. To reduce this data
transfer time, we use asynchronous data transfer between
GPU and CPU, as recommended in [37]. Asynchronous
data transfer means that the CPU will continuously issue
commands to the GPU’s command stream without waiting
for the data transfer to be completed.

5.2.2 Kernel 1

The goal of Kernel 1 is to identify a promising space. For
Kernel 1, we use M thread blocks and each one has N
threads (i.e., MN threads in total). To identify a promising
space, we need to calculate dmiB, i ∈ N ,m ∈ M. Since we
have MN threads in total, each dmiB will be calculated by a
thread in parallel. Then we find D promising SUs for each
RB by finding the indexes of the max-D metrics regarding
each RB, (i.e., find {s1, s2, · · · , sD} from {dm1B, d

m
2B, · · · , dmNB}

such that dms1B ≥ dms2B ≥ · · · ≥ dmsDB ≥ others). Since the RB
allocations on different RBs are independent, we use one
thread block for an RB to perform these operations and this
will give us a promising space S with DM subproblems.

For each thread block, we need to find the max-D
elements and their indexes from N given numbers. To
reduce computation time through parallelization, we use D
times of parallel reduction to obtain the max-D elements.
Parallel reduction is widely used in GPU programming to
reduce computation time, especially for operations such as

finding the maximum (or minimum) and the sum of some
given numbers [38]. In general, for operations involving n
numbers, parallel reduction reduces the necessary iterations
from n − 1 to dlog2(n)e using n/2 threads, which leads to
a lower execution time. For instance, we need dlog2(N)e
iterations with N/2 threads to find the maximum among
{dm1B, d

m
2B, · · · , dmNB}. Since execution time is our major con-

cern and GPU has plenty of threads, we can use parallel
reduction to reduce the execution time in our implementa-
tion.

As for memory management, we use shared memory
for those frequently-used variables in Kernel 1, e.g., those
temporary variables during parallel reduction, dmiB’s, and the
indexes of the promising RB allocations. The last two sets of
variables will be copied to GPU global memory at the end
of Kernel 1 for later steps since shared memory cannot be
accessed externally. Note that data transfer between shared
memory and GPU global memory can be done in parallel to
reduce time consumption.

5.2.3 Kernel 2

Kernel 2 is the main component of our implementation,
which has three parts: 1) random sampling Kx subprob-
lems, 2) solving the subproblems, and 3) finding the best
solution within each thread block. The reason why we
combine the three parts into one Kernel is because of their
close relationship, which avoids extra time for switching
Kernels.

We use KxKp/2 thread blocks with each having 4M
threads. That is 2MKp threads for one subproblem and
2M threads for a starting point later on. We choose these
parameters for three reasons. First, a design is considered
“good” if it has a high “occupancy” [39], where occu-
pancy is defined as the maximum utilization of each active
Streaming Multiprocessor (SM) for a Kernel. Note that 100%
“occupancy” is not always optimal since it is defined with
maximum instead of average. Second, the number of threads
in each thread block should not be too large. Otherwise,
additional synchronizations would be needed in Kernel
2, which increases time consumption. Third, we use 2M
threads to take advantage of GPU’s parallelization where
two independent calculations can be done simultaneously
(such as the numerator and the denominator of a fraction).

In the following paragraphs, we will describe the three
parts in detail.

Random sampling The goal of this part is to generate
Kx subproblems. Since we only need Kx subproblems, the
KxKp/2 thread blocks are equally divided into Kx groups
and each group hasKp/2 thread blocks. Further, each group
has the same sampling results that correspond to the same
subproblem.

To randomly sample Kx subproblems, we need Kx

feasible RB allocations inside the promising space. A feasible
RB allocation is in the form of {π1, π2, · · · , πm} where
πm ∈ {sm1 , sm2 , · · · , smD},m ∈ M. We use M threads to
generate each subproblem and name these M threads from
0 to M − 1. Then thread m will generate its allocated SU

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

10

based on the following distribution

P{πm = s1} = dms1B/d
m ,

P{πm = s2} = dms2B/d
m ,

· · ·
P{πm = sD} = dmsDB/d

m ,

(26)

where dm = dms1B+d
m
s2B+· · ·+dmsDB is the normalization fac-

tor. The readers can easily verify that the random sampling
per RB in (26) is equivalent to sampling the subproblems
based on the distribution in (16).
Solve the subproblems In this part, we need to solve
the Kx subproblems using our proposed method based on
starting points and local search. Recall that in our GUC algo-
rithm, each subproblem uses Kp starting points to generate
Kp feasible solutions. The output of this part will be KxKp

feasible solutions and their corresponding objective values.
To solve a subproblem, we first generate the Kp starting

points in parallel based on (17). A starting point is in
the form of {p1π1B, p

2
π2B, · · · , pMπMB}. Then we perform the

scaling-based local search (i.e., (18)-(22)) to obtain a feasible
solution from a specific starting point and calculate its ob-
jective value. After the scaling-based local search, we have
KxKp feasible solutions and we can use parallel reduction
to calculate the corresponding KxKp objective values.

There are many tricks to further reduce execution time
on GPU. For instance, the calculations of Îj and Î ′j can be
done in parallel since we use 2M threads for one starting
point. We can employ parallel reduction for the sums in (18)-
(22). Here we discuss the calculation of pTπRπjpπ in (20a) as
an example to show how to further reduce the computation
time of GUC.

Example 1. Calculation of pTπRπjpπ in (20a).
Originally, we need to calculate M2 polynomial terms

corresponding to each element of Rπj for pTπRπjpπ . How-
ever, we can reduce the number of polynomial terms based
on special structures of Rπj . The original covariance Rj has
the following properties:
(i) Rj is symmetric since it is the covariance of gj .
(ii) Rj is a band matrix meaning only several of its diagonals
are non-zero. Notice that the values in Rj represent the
correlation levels between RBs and it is well-known that
the correlation of interference channel gains between two
RBs decreases as they are further apart. To exploit this
property, define Lj as the maximum subcarrier spacing
that has correlations, meaning that an RB is correlated with
at most 2Lj neighboring RBs. With the help of Lj , Rj

is a band matrix with (2Lj + 1) nonzero diagonals and
typically Lj is substantially smaller than M . As a special
case, Lj = 0 means that the interference channel gains
gmπmj ’s are independent with each other and hence Rπj is
a diagonal matrix.

Based on these two structures of Ri, as its truncated
version, Rπj is also a symmetric band matrix, given by

Rπj =
r11 · · · r1(Lj+1)

r21 r22 · · · r2(Lj+2)

· · · · · · · · · · · · · · ·
r(M−Lj)M · · · rMM



Clearly, there are M(Lj + 1)− (Lj(1 + Lj)/2) non-zero
elements in the upper triangle of Rπj . Thus, we only need
to calculate M(Lj + 1)− (Lj(1 + Lj)/2) polynomial terms
(compared to M2 originally) for pTπRπjpπ , given as

pTπRπjpπ =
M∑
m=1

(pmπmB)
2 · rmm

+ 2

Lj∑
lj=1

M−lj∑
m=1

pmπmB · rm(m+lj) · p
m+lj
πm+lj

B .

(27)

Another advantage of doing this is to reduce the memory
needed to store Rj since we only need to store the non-zero
elements in the upper triangle of Rj . �

Find the best solution within each thread block At this
point, each thread block has multiple feasible solutions, we
will find the one with the highest objective value within
each thread block. Only these solutions will be copied to
the GPU global memory for Kernel 3 and other solutions
will be discarded. The benefit of doing this is to reduce the
number of solutions to be copied to global memory and to
be compared in Kernel 3, which saves execution time. In our
design, we have KxKp/2 feasible solutions stored in GPU
global memory after this step.

As for memory management in Kernel 2, we focus on
shared memory. Specifically, we describe two typical types
of data that should be stored in shared memory to reduce
memory access time:
(i) data used only within a thread block. For example, Îj and
Î ′j in (20) are only used within a thread block for Kernel 2,
and they are stored in shared memory.
(ii) data used outside of a thread block but also frequently
accessed (read/write) by the threads within a thread block.
For example, pmπmB’s need to be accessed in later steps but are
frequently read and written by the threads within a thread
block for Kernel 2. Therefore, pmπmB’s are stored in shared
memory during the execution of Kernel 2 and will be copied
to GPU global memory upon completion for later steps.

5.2.4 Kernel 3
The goal of Kernel 3 is to find the best solution across
all thread blocks, which will be the final solution. We use
one thread block for Kernel 3 to find the best solution by
comparing the objective values among the KxKp/2 solu-
tions. Clearly, this operation can be done through parallel
reduction to reduce execution time. The best feasible solu-
tion (with the highest objective value) will be stored in GPU
global memory.

5.2.5 Move the best solution from GPU to CPU
The last step of our implementation is to move the best
solution from GPU global memory to CPU memory, which
includes the feasible RB allocations xmiB’s and transmit pow-
ers pmiB’s.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
GUC through experiments. All codes and data in our ex-
periments are available at [40]. We will focus on the actual
running time, threshold violation probability, and achieved
objective values.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

11

6.1 Settings

Throughout our experiments, we assume the distance be-
tween the macro BS and the pico BS is 400 meters and
the radius of a picocell is 50 meters. We assume that the
transmission power of macro BS on each RB is 46 dBm and
each SU has a maximum transmission power of 20 dBm
across all RBs [41]. The thermal noise on each RB is set to
1× 10−7 mW.

For network topology, we consider fixed PUs and
a varying number of SUs and RBs. We assume the
pico BS is located at the origin and there are five
fixed PUs (J = 5) near the picocell with coordi-
nates (60, 0), (−50, 25), (−40, 40), (35,−45), and (55, 10).
Though GUC can handle different interference thresholds
and risk levels for the PUs, without loss of generality, we set
the interference threshold for all PUs to Ij = 3× 10−7 mW
and use the same risk level ε for all PUs ranging from 0.01
to 0.5, i.e., εi = ε ∈ [0.01, 0.5], i ∈ N .

The wireless channels are modeled by ITU path-loss [8]
and Rayleigh fading. We consider two types of path-loss
models as following:

1) The path-loss from the macro BS follows the ITU
outdoor path-loss model as

PL(dB) = 128.1 + 37.6× log10(dmacro) , (28)

where dmacro is the distance from the macro BS to the pico
BS (in kilometers).

2) The path-loss from the SUs to the nearby PUs or the
pico BS follows the ITU indoor path-loss model as

PL(dB) = 38 + 30× log10(dpico) , (29)

where dpico is the distance from a SU to a nearby PU or the
pico BS (in meters).

We consider channel gains can be either independent or
correlated. In the correlated setting, we employ the well-
known exponential correlation model [42] with a correlation
factor ρ = 0.7, which represents an extreme case for corre-
lated channel in a picocell. We set Lj = 6 under correlated
channel, which means that two RBs are correlated if they are
within 6 sub-carrier spacing and the correlation coefficients
beyond 6 sub-carrier spacing are negligible (smaller than
0.01).

We emphasize that the channel models described here
are only for us to generate the experimental parameters. Our
GUC does not have any knowledge of these distributions. In
other words, GUC is completely “blindfolded” with respect
to these parameters in our experiments.

6.2 Case studies

In this subsection, we use fixed topologies as case studies to
evaluate GUC’s performance. We consider a typical picocell
setting with 32 RBs and 20 SUs, i.e., M = 32, N = 20. We
use three network topologies where the SUs are randomly
distributed, clustering near the pico BS, and distributed
around the picocell’s edge.

6.2.1 Randomly distributed SUs
We first consider the case where SUs are randomly dis-
tributed in the picocell following a uniform distribution (see

-60 -30 0 30 60

-60

-30

0

30

60
Pico BS

SUs

PUs

Fig. 5. A topology with SUs randomly distributed in the picocell.

Fig. 5). We use fixed weights wi’s for the SUs that are gen-
erated based on uniform distribution. wi’s are normalized
such that the sum of wi’s among SUs is 1. For the param-
eter D used to identify the promising space, we choose
D = 2 throughout our experiments, which means that the
promising space has 2M subproblems. As for the number
of subproblems, we choose 128 subproblems for each run
(Kx = 128) and use 24 different starting points (Kp = 24)
for each subproblem with design parameter δ = 0.2. This
means that the final solution is the best solution selected
from a total of 3072 (KxKp) feasible solutions.

We implement GUC on NVIDIA Telsa V1000 which has
7680 CUDA cores. As for CPU platform, we use Intel Xeon
E5-2687w v4 and solve P2 in Gurobi 9.1 with 1% MIP
gap. Since Gurobi cannot handle exponential cones from
log functions (in the calculations of spectrum efficiency),
we will upper bound each log term by a convex hull [43]
and obtain a feasible solution and an upper bound on the
optimal solution as well. This will reduce the computation
time for solving the problem on CPU. Further, the obtained
feasible solution is sufficiently close to the upper bound
(from convex hull) and will serve as a benchmark for
performance evaluation.

We perform 100 runs for each topology. For each run,
we randomly generate transmission channel gain hmiB based
on the channel model described in Section 6.1. The results
shown in this subsection are the average from these 100
runs.
Running time We first show the measured running time of
GUC and Gurobi on CPU. The results are shown in Table 2
and we have two observations.

First, we see the average running time of GUC is smaller
than the required 125 µs. In fact, we have checked the run-
ning time of each run and none of them exceeds 125 µs. This
demonstrates that GUC meets the 5G timing requirement
for a picocell scheduler. Comparing to the running time on
CPU, GUC achieves at least 104 times of reduction in time
under both independent and correlated channels.

Second, the running time under correlated channel is
higher than the that under independent channel. This is as
expected since under correlated channel, the problem itself
requires more operations to solve, especially in calculating
pTπRπjpπ .
Actual threshold violation probability Now we check
whether or not the actual threshold violation probability is
below the risk level, i.e., whether constraints (5) are satisfied

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

12

TABLE 2
Average running time (µs) for the network topology in Fig. 5

Implementation Independent Channel Correlated Channel
GUC on GPU 62.71 81.60
Gurobi on CPU 3.33×106 5.91×106

0.01 0.1 0.2 0.3 0.4 0.5

Risk level

0

0.05

0.1

0.15

0.2

0.25

T
h

re
sh

o
ld

 v
io

la
tio

n
 p

ro
b

a
b

ili
ty PU (-40, 40), Ind.

PU (35, -45), Ind.

PU (-40, 40), Corr.

PU (35, -45), Corr.Risk level

Fig. 6. PUs’ threshold violation probabilities for the network topology in
Fig. 5.

or not. To do this, after we obtain the RB allocations and
transmission powers in each run, we generate 10,000 sam-
ples of interference channel gains gmij ’s. The actual threshold
violation probability for each PU can be calculated by the
portion of samples that the threshold is violated. For a fixed
risk level ε, we show the average threshold violation proba-
bility from two PUs located at (-40,40) and (35,-45) since we
found their violation probabilities are always greater than
the other three PUs. The results are shown in Fig. 6.

As shown in Fig. 6, the actual threshold violation prob-
abilities (on average) are indeed smaller than the risk level
ε and they are different for the two PUs. In fact, we also
checked the maximum threshold violation probabilities for
all PUs among 100 runs and none of them exceeds the risk
level ε, which means all nearby PUs are protected from
GUC. Further, the actual threshold violation probabilities
are increasing with a higher risk level ε, meaning that the
SUs are taking advantage of the transmission opportunities
provided by the PUs. The gap between the actual threshold
violation probabilities and risk level ε affirms that our
channel model (ITU pass loss and Rayleigh fading) is not
the worst-case distribution, as discussed in [16]. Last but
not the least, we see the correlation among channel gains
only has a marginal impact on the actual threshold violation
probabilities, which is expected since the correlation level
inside a picocell is typically low (both in practice and in our
considered setting).
Objective value The objective values obtained from GUC
and the optimal solution from CPU are shown in Fig. 7.
As shown in Fig. 7, the objective values are all increasing
w.r.t. risk level ε. This is as expected since a higher risk level
means more tolerance of interference threshold violation
and thus SUs can increase their higher powers to achieve
high throughput. Further, we see GUC achieves 90%∼92%
optimality under independent and correlated channels com-
pared with that from the optimal solution, which is excel-
lent. Last, as shown in Fig. 7, the objective values under cor-
related channel are smaller than those under independent

0.01 0.1 0.2 0.3 0.4 0.5

Risk level

0

1

2

3

O
b
je

ct
iv

e
 (

b
p
s/

H
z)

Optimal, Ind.Optimal, Corr.

GUC, Corr.

GUC, Ind.

Fig. 7. Objective value for the network topology in Fig. 5

-60 -30 0 30 60

-60

-30

0

30

60
Pico BS

SUs

PUs

Fig. 8. A topology with all SUs clustered near the pico BS.

channel in both CPU and GUC solutions. In fact, such a
loss due to correlation is 8% on average in both approaches.
This is due to a smaller optimization space under correlated
channel, which can be seen from constraints (9).

6.2.2 Two extreme topologies for SUs

We first consider a network topology where all SUs are
clustering near the pico BS. This represents an extreme case
for picocell settings. We randomly generate SUs inside the
picocell based on uniform distribution while keeping the
distance from each SU to the pico BS no greater than 10
meters. The network topology is shown in Fig. 8.

The measured running time is shown in Table 3 and we
see the running time of GUC is smaller than the required 125
µs. Comparing to the running time on CPU, GUC achieves
at least 104 and 105 times of reduction in running time
under independent and correlated channels respectively.

The objective value and actual threshold violation prob-
abilities for the two PUs are shown in Fig. 9. As shown in
Fig. 9(b), the achieved spectrum efficiency is significantly
higher than that from randomly distributed SUs. This is
because the SUs are closer to the pico BS (thus high hmiB’s).
Further, GUC achieves near-optimal performance (95% on
average) compared to the optimal solution under indepen-
dent and correlated channels.

We next consider a network topology where all SUs are
distributed around the picocell’s edge. We randomly gen-
erate SUs inside the picocell based on uniform distribution
but only keeping those locations to the pico BS within the
45∼50-meter ring. The topology is shown in Fig. 10. The
measured running time is shown in Table 4. The objective

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

13

TABLE 3
Average running time (µs) for the network topology in Fig. 8

Implementation Independent Channel Correlated Channel
GUC on GPU 62.60 81.77
Gurobi on CPU 4.68×106 1.33×107

0.01 0.1 0.2 0.3 0.4 0.5

Risk level

0

0.05

0.1

0.15

0.2

0.25

T
h

re
sh

o
ld

 v
io

la
tio

n
 p

ro
b

a
b

ili
ty PU (-40, 40), Ind.

PU (35, -45), Ind.

PU (-40, 40), Corr.

PU (35, -45), Corr.Risk level

(a) Threshold violation probabilities for PUs

0.01 0.1 0.2 0.3 0.4 0.5

Risk level

0

5

10

15

O
b
je

ct
iv

e
 (

b
p
s/

H
z)

GUC, Ind.

Optimal, Ind.

GUC, Corr.

Optimal, Corr.

(b) Objective value

Fig. 9. Performance of GUC for the network topology in Fig. 8

value and actual threshold violation probabilities for the two
selected PUs are shown in Fig. 11.

As shown in Table 4, the running time of GUC is smaller
than the required 125 µs and is at least 104 smaller compar-
ing to that from CPU. Further, comparing Table 2, Table 3,
and Table 4, we see the running times of GUC are similar
under the three netowork topologies while that from CPU
varies widely. This is because the number of operations per
thread from GUC is fixed under all three network topologies
while the number of iterations in Gurobi can vary. Last,
as shown in Fig. 11(b), the objective value is significantly
lower than that from randomly distributed SUs since the
SUs are further away from the pico BS (thus lower hmiB’s). We
also see GUC achieves 90% and 86% optimality on average
compared to the optimal solution obtained on CPU under
independent and correlated channel respectively, which is
satisfactory for practical purposes.

6.3 Varying RBs and SUs

6.3.1 Varying number of RBs

In this experiment, we evaluate GUC under a varying
number of RBs. Specifically, we fix the number of SUs to
N = 20 and set the number of RBs to M = 32 ∼ 80.

-60 -30 0 30 60

-60

-30

0

30

60
Pico BS

SUs

PUs

Fig. 10. A topology with all SUs distributed around the picocell’s edge

TABLE 4
Average running time (µs) for the network topology in Fig. 10

Implementation Independent Channel Correlated Channel
GUC on GPU 62.87 79.98
Gurobi on CPU 6.74×106 1.16×107

For each setting, we perform 100 runs. Since our main in-
terest is running time, we will randomly generate a network
topology, channel gains, and weights following uniform dis-
tribution in each run. Fig. 12 shows the average, maximum,
and minimum of running time for each M (number of RBs).

As shown in Fig. 12, the running time of GUC increases
monotonically w.r.t. M . This is because the complexity of
Kernel 2 (the key component of GUC) largely depends on
M , i.e., the number of decision variables in each subprob-
lem. As M increases, the maximum number of operations
for a thread also increases and we need to launch more
threads for kernel functions. Though logically threads are
launched totally in parallel but in fact, threads are launched
in groups (typically 32 threads as a “warp”) on physical
processors. Thus, launching more threads could increase the
overall time.

In Fig. 12, under independent channel, the running time
of all instances meets the 125 µs requirement. But under
correlated channel, the running time exceeds 125 µs when
M = 80. This is due to the calculation of pTπRπjpπ in
(27), which involves M and M(Lj + 1) − (Lj(1 + Lj)/2)
polynomials terms under independent channel (Lj = 0)
and correlated channel (Lj = 6) respectively. Note that
we have KxKp subproblems and each subproblem has J
terms of pTπRπjpπ . Thus, this slight difference in one term
can lead to a significant difference in running time between
independent and correlated channels. Nevertheless, such an
issue can be relieved by choosing less subproblems (i.e., a
smaller Kx), using less starting points per subproblem (i.e.,
a smaller Kp), or using customized GPU to reduce the data
transfer time between GPU and CPU, which can be easily
done by network operators. But in practice, M ≤ 64 is
expected for picocells since it only occupies a fraction of the
macrocell’s spectrum [29]. So we conclude that GUC will
meet the 125 µs requirement under different M for practical
purposes.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

14

0.01 0.1 0.2 0.3 0.4 0.5

Risk level

0

0.05

0.1

0.15

0.2

0.25

T
h

re
sh

o
ld

 v
io

la
tio

n
 p

ro
b

a
b

ili
ty PU (-40, 40), Ind.

PU (35, -45), Ind.

PU (-40, 40), Corr.

PU (35, -45), Corr.Risk level

(a) Threshold violation probabilities for PUs

0.01 0.1 0.2 0.3 0.4 0.5

Risk level

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
b

je
ct

iv
e

 (
b

p
s/

H
z)

Optimal, Corr.

GUC, Corr.

Optimal, Ind.

GUC, Ind.

(b) Objective value

Fig. 11. Performance of GUC for the network topology in Fig. 10

32 48 64 80

M

0

50

100

150

R
u

n
n

in
g

 t
im

e
 (

u
s)

125 us requirement

Corr.

Ind.

Fig. 12. Running time of GUC under varying number of RBs

6.3.2 Varying number of SUs
In this experiment, we evaluate GUC under a varying
number of SUs. Specifically, we fix the number of RBs to
M = 32, 64 and vary the number of SUs to N = 15 ∼ 30.
Similar with previous experiment, we perform 100 runs and
in each run, we randomly generate a network topology,
channel gains, and weights following a uniform distribu-
tion. Fig. 13 shows the average, maximum, and minimum
of running time under varying N (number of SUs).

As shown in Fig. 13, both curves are relatively flat since
the main time consumption of GUC is Kernel 2 whose
complexity mainly depends on M . Further, when M = 32,
the running time of GUC meets the 125 µs requirement in
all experiments. However, when M = 64 and N ≥ 25, the
running time of GUC under correlated channel exceeds the
125 µs requirement, though these cases are rare for practical
picocell settings. Nevertheless, similar with the previous

15 20 25 30

N

0

20

40

60

80

100

120

R
u

n
n

in
g

 t
im

e
 (

u
s)

125 us requirement

Ind.

Corr.

(a) M = 32

15 20 25 30

N

0

50

100

150

R
u
n
n
in

g
 t
im

e
 (

u
s)

125 us requirement

Corr.

Ind.

(b) M = 64

Fig. 13. Running time of GUC under varying number of SUs

case of M > 64, we can reduce the running time by using
smaller Kx and Kp or a customized GPU for faster data
transfer. In practice, N ≤ 25 is expected for a picocell
due to its small footprint, and thus we conclude that GUC
meets the 125 µs requirement under differentN for practical
purposes.

7 CONCLUSIONS

In this paper, we studied underlay coexistence for 5G pico-
cells sharing the same spectrum with a macrocell. Specif-
ically, we perform scheduling and power control for the
Secondary Users (SUs) to maximize the spectrum efficiency
while protecting nearby Primary Users (PUs). To address
channel uncertainty due to a lack of cooperation between
PUs and SUs, we employed Chance-Constrained Program-
ming (CCP) that allows occasion violations of PUs’ interfer-
ence thresholds. To meet the real-time requirement for a 5G
picocell scheduler, we designed and implemented a novel
scheduler called GPU-based Underlay Coexistence (GUC)
that decomposes the original problem and solves subprob-
lems in parallel on a large number of GPU cores. Through
extensive experiments, we show that GUC meets the 125 µs
timing requirement under typical picocell settings, which
is at least 4 orders of magnitude reduction compared to
conventional solution on CPU. Further, GUC achieves 90%
optimality on average while guaranteeing threshold vio-
lation probabilities for the PUs. For future research, it is
worth investigating the impact of channel uncertainty in
more complicated scenarios, such as high user mobility,
MU-MIMO, and nonorthogonal multiple access (NOMA).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

15

REFERENCES

[1] S. Li, Y. Huang, C. Li, Y. T. Hou, W. Lou, B. Jalaian,
S. Russell, and B. MacCall, “A real-time solution for un-
derlay coexistence with channel uncertainty,” in Proc. IEEE
GLOBECOM 2019, pp. 1–6, Waikoloa, HI, Dec. 2019.

[2] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa,
“Breaking spectrum gridlock with cognitive radios: An
information theoretic perspective,” Proceeds of the IEEE,
vol. 97, no. 5, pp. 894–914, May 2009.

[3] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano,
A. C. Soong, and J. C. Zhang, “What will 5G be?” IEEE
J. Selected Areas in Commun., vol. 32, no. 6, pp. 1065–1082,
June 2014.

[4] A. Ben-Tal and A. Nemirovski, “Robust solutions of uncer-
tain linear programs,” Operations Research Letters, vol. 25,
no. 1, pp. 1–13, Aug. 1999.

[5] D. J. Costello and G. D. Forney, “Channel coding: the road
to channel capacity,” Proceeds of the IEEE, vol. 95, no. 6, pp.
1150–1177, June 2007.

[6] Y. Wang and Q.-F. Zhu, “Error control and concealment
for video communication: a review,” Proceeds of the IEEE,
vol. 86, no. 5, pp. 974–997, May 1998.

[7] T. Painter and A. Spanias, “Perceptual coding of digital
audio,” Proceedings of the IEEE, vol. 88, no. 4, pp. 451–515,
Apr. 2000.

[8] 3GPP, 3GPP TR 36.931: Radio Frequency (RF) requirements for
LTE Pico Node B, June 2018, version 15.0.0. Available: https:
//portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2589.

[9] ——, 3GPP TR 36.932: Scenarios and requirements
for small cell enhancements for E-UTRA and E-
UTRAN, July 2018, version 15.0.0. Available: https:
//portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2590.

[10] ——, 3GPP TR 38.802: Study on New Radio Access
Technology Physical Layer Aspects, Sep. 2017, version 14.2.0.
Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=
3066.

[11] ——, 3GPP TR 38.211: Physical channels and modulation,
March 2019, version 15.5.0. Available: https:
//portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3213.

[12] Qualcomm. The 3GPP Release-15 5G NR design.
Available: https://www.qualcomm.com/media/
documents/files/the-3gpp-release-15-5g-nr-design.pdf
(Last accessed: Feb. 2021).

[13] S. Wang, W. Shi, and C. Wang, “Energy-efficient resource
management in OFDM-based cognitive radio networks
under channel uncertainty,” IEEE Trans. on Commun.,
vol. 63, no. 9, pp. 3092–3102, Sept. 2015.

[14] N. Y. Soltani, S.-J. Kim, and G. B. Giannakis, “Chance-
constrained optimization of OFDMA cognitive radio up-
links,” IEEE Trans. on Wireless Commun., vol. 12, no. 3, pp.
1098–1107, Mar. 2013.

[15] N. Mokari, S. Parsaeefard, P. Azmi, H. Saeedi, and E. Hos-
sain, “Robust ergodic uplink resource allocation in un-
derlay OFDMA cognitive radio networks,” IEEE Trans. on
Mobile Computing, vol. 15, no. 2, pp. 419–431, Feb. 2016.

[16] S. Li, Y. Huang, C. Li, B. A. Jalaian, Y. T. Hou, and W. Lou,
“Coping uncertainty in coexistence via exploitation of
interference threshold violation,” in Proc. ACM Mobihoc
2019, pp. 7–80, Catania, Italy, July 2019.

[17] Y. Huang, S. Li, Y. T. Hou, and W. Lou, “GPF: A GPU-based
design to achieve ∼100 µs scheduling for 5G NR,” in Proc.
ACM MobiCom 2018, pp. 207–222, New Delhi, India, July
2018.

[18] Y. Chen, Y. Huang, C. Li, T. Hou, and W. Lou, “Turbo-HB:
A novel design and implementation to achieve ultra-fast

hybrid beamforming,” in Proc. IEEE INFOCOM 2020, pp.
1489–1498, Virtual Conference, May 2020.

[19] W. W.-L. Li, Y. J. Zhang, A. M.-C. So, and M. Z. Win, “Slow
adaptive OFDMA systems through chance constrained
programming,” IEEE Trans. on Signal Processing, vol. 58,
no. 7, pp. 3858–3869, July 2010.

[20] Z. Liu, Y. Xie, K. Y. Chan, K. Ma, and X. Guan, “Chance-
constrained optimization in D2D-based vehicular com-
munication network,” IEEE Trans. on Vehicular Technology,
vol. 68, no. 5, pp. 5045–5058, May 2019.

[21] T. A. Le, Q.-T. Vien, H. X. Nguyen, D. W. K. Ng, and
R. Schober, “Robust chance-constrained optimization for
power-efficient and secure SWIPT systems,” IEEE Trans.
on Green Commun. and Networking, vol. 1, no. 3, pp. 333–
346, Sept. 2017.

[22] R. Atawia, H. Abou-Zeid, H. S. Hassanein, and
A. Noureldin, “Joint chance-constrained predictive re-
source allocation for energy-efficient video streaming,”
IEEE J. Selected Areas in Commun., vol. 34, no. 5, pp. 1389–
1404, May 2016.

[23] C. Li, Y. Huang, Y. Chen, B. Jalaian, Y. T. Hou, and W. Lou,
“Kronos: A 5G Scheduler for AoI minimization under
dynamic channel conditions,” in Proc. IEEE ICDCS 2019,
pp. 1466–1475, Dallas, TX, May 2020.

[24] G. Falcao, L. Sousa, and V. Silva, “Massively LDPC decod-
ing on multicore architectures,” IEEE Trans. on Parallel and
Distributed Systems, vol. 22, no. 2, pp. 309–322, Feb. 2010.

[25] C. Jeon, K. Li, J. R. Cavallaro, and C. Studer, “Decentral-
ized equalization with feedforward architectures for mas-
sive MU-MIMO,” IEEE Trans. on Signal Processing, vol. 67,
no. 17, pp. 4418–4432, Sept. 2019.

[26] H. Li, T. Zhang, R. Zhang, and X.-Y. Liu, “High-
performance tensor decoder on GPUs for wireless camera
networks in IoT,” in Proc. IEEE High Performance Computing
and Communications (HPCC) 2019, pp. 1619–1626, Zhangji-
ajie, China, Aug. 2019.

[27] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Va-
japeyam, T. Yoo, O. Song, and D. Malladi, “A survey on
3GPP heterogeneous networks,” IEEE Wireless Commun.,
vol. 18, no. 3, pp. 10–21, June 2011.

[28] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Fem-
tocell networks: A survey,” IEEE Commun. Magazine,
vol. 46, no. 9, pp. 59–67, 2008.

[29] F. Jin, R. Zhang, and L. Hanzo, “Fractional frequency reuse
aided twin-layer femtocell networks: Analysis, design and
optimization,” IEEE Trans. on Commun., vol. 61, no. 5, pp.
2074–2085, Sept. 2013.

[30] H.-B. Chang and I. Rubin, “Optimal downlink and uplink
fractional frequency reuse in cellular wireless networks,”
IEEE Trans. on Vehicular Technology, vol. 65, no. 4, pp. 2295–
2308, Apr. 2016.

[31] A. Furtado, L. Irio, R. Oliveira, L. Bernardo, and R. Di-
nis, “Spectrum sensing performance in cognitive radio
networks with multiple primary users,” IEEE Trans. on
Vehicular Technology, vol. 65, no. 3, pp. 1564–1574, Mar.
2016.

[32] L. Wei and O. Tirkkonen, “Spectrum sensing in the pres-
ence of multiple primary users,” IEEE Trans. on Commun.,
vol. 60, no. 5, pp. 1268–1277, May 2012.

[33] P. Vamvakas, E. E. Tsiropoulou, and S. Papavassiliou, “Dy-
namic spectrum management in 5G wireless networks:
A real-life modeling approach,” in Proc. IEEE INFOCOM
2019, pp. 2134–2142, Paris, France, Apr. 29 - May 2, 2019.

[34] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik,
and O. O. Storaasli, “State-of-the-art in heterogeneous
computing,” Scientific Programming, vol. 18, no. 1, pp. 1–
33, Jan. 2010.

[35] B. Betkaoui, D. B. Thomas, and W. Luk, “Comparing
performance and energy efficiency of FPGAs and GPUs
for high productivity computing,” in Proc. IEEE Field-

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2589
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2589
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2589
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2590
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2590
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2590
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3066
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3066
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3066
https://portal.3gpp.org/desktopmodules/Specifications/ SpecificationDetails.aspx?specificationId=3213
https://portal.3gpp.org/desktopmodules/Specifications/ SpecificationDetails.aspx?specificationId=3213
https://portal.3gpp.org/desktopmodules/Specifications/ SpecificationDetails.aspx?specificationId=3213
https://www.qualcomm.com/media/documents/files/the-3gpp-release-15-5g-nr-design.pdf
https://www.qualcomm.com/media/documents/files/the-3gpp-release-15-5g-nr-design.pdf

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

16

Programmable Technology (FPT) 2010, pp. 94–101, Beijing,
China, Dec. 2010.

[36] N. Corp. Cuda toolkit. Available: https://developer.
nvidia.com/CUDA-toolkit (Last accessed: Feb. 2021).

[37] M. Harris. How to overlap data transfers in CUDA
C/C++. Available: https://devblogs.nvidia.com/
how-overlap-data-transfers-cuda-cc/ (Last accessed:
Feb. 2021).

[38] ——. Optimizing parallel reduction in CUDA. Available:
https://developer.download.nvidia.com/assets/cuda/
files/reduction.pdf (Last accessed: Feb. 2021).

[39] ——. CUDA pro tip: Occupancy API simplifies
launch configuration. Available: devblogs.nvidia.com/
cuda-pro-tip-occupancy-api-simplifies-launch-configuration/
(Last accessed: Feb. 2021).

[40] S. Li. Experimental codes and data for GUC. Available:
https://github.com/ShaoranLi/GUC.

[41] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient re-
source allocation in OFDMA systems with large numbers
of base station antennas,” IEEE Trans. on Wireless Commun.,
vol. 11, no. 9, pp. 3292–3304, Sept. 2012.

[42] R. K. Mallik, “On multivariate Rayleigh and exponential
distributions,” IEEE Trans. on Information Theory, vol. 49,
no. 6, pp. 1499–1515, June 2003.

[43] Y. T. Hou, Y. Shi, and H. D. Sherali, Applied Optimization
Methods for Wireless Networks, Chp. 5, pp. 110-112. Cam-
bridge University Press, Apr. 2014.

Shaoran Li (S17) received the B.S. degree from
Southeast University, Nanjing, China, in 2014
and the M.S. degree from the Beijing Univer-
sity of Posts and Telecommunications (BUPT),
China, in 2017. He is a currently working toward
his Ph.D. degree at Virginia Tech, Blacksburg,
VA, USA. His research interests include algo-
rithm design and implementation for wireless
networks. In 2019, his paper won the Fred W.
Ellersick MILCOM Award for the Best Paper in
the unclassified technical program.

Yan Huang (M’15) is currently a senior system
software engineer at the NVIDIA Corporation,
Santa Clara, CA, USA. He received his Ph.D.
degree in Electrical Engineering from Virginia
Tech in 2020, and his B.S. and M.S. degrees
in Electrical Engineering from Beijing University
of Posts and Telecommunications in 2012 and
2015, respectively. During his Ph.D. study at Vir-
ginia Tech, he was awarded a Pratt Scholarship
in 2019 and a Bindi Prasad Scholarship in 2020,
respectively. He holds two U.S. and international

patents. His research interests include GPU-accelerated real-time opti-
mizations and machine learning for wireless communications and net-
working.

Chengzhang Li (S’17) is a Ph.D. student in the
Bradley Department of Electrical and Computer
Engineering at Virginia Tech, Blacksburg, VA,
USA. He received his B.S. degree in Electronics
Engineering from Tsinghua University, Beijing,
China, in 2017. His current research interests
are modeling, analysis and algorithm design for
wireless networks, with a focus on Age of Infor-
mation (AoI), 5G and ultra-low latency research.

Y. Thomas Hou (F’14) is Bradley Distinguished
Professor of Electrical and Computer Engineer-
ing at Virginia Tech, Blacksburg, VA, USA, which
he joined in 2002. His current research focuses
on developing innovative solutions to complex
science and engineering problems arising from
wireless and mobile networks. He is also inter-
ested in wireless security. He has published over
300 papers in IEEE/ACM journals and confer-
ences. His papers were recognized by nine best
paper awards from IEEE and ACM. He holds six

U.S. patents. He authored/co-authored two graduate textbooks: Applied
Optimization Methods for Wireless Networks (Cambridge University
Press, 2014) and Cognitive Radio Communications and Networks: Prin-
ciples and Practices (Academic Press/Elsevier, 2009). Prof. Hou was
named an IEEE Fellow for contributions to modeling and optimization of
wireless networks. He was/is on the editorial boards of a number of IEEE
and ACM transactions and journals. He was Steering Committee Chair
of IEEE INFOCOM conference and was a member of the IEEE Com-
munications Society Board of Governors. He was also a Distinguished
Lecturer of the IEEE Communications Society.

Wenjing Lou (F’15) is the W. C. English En-
dowed Professor of Computer Science at Vir-
ginia Tech and a Fellow of the IEEE. Her re-
search interests cover many topics in the cy-
bersecurity field, with her current research inter-
est focusing on wireless network security, trust-
worthy AI, blockchain, and security and privacy
problems in the Internet of Things (IoT) systems.
Prof. Lou is a highly cited researcher by the
Web of Science Group. She received the Virginia
Tech Alumni Award for Research Excellence in

2018. She received the INFOCOM Test-of-Time paper award in 2020.
She was the TPC chair for IEEE INFOCOM 2019 and ACM WiSec 2020.
She was the Steering Committee Chair for IEEE CNS conference from
2013 to 2020. She is currently a steering committee member of IEEE
INFOCOM and IEEE Transactions on Mobile Computing. She served as
a program director at the US National Science Foundation (NSF) from
2014 to 2017.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

https://developer.nvidia.com/CUDA-toolkit
https://developer.nvidia.com/CUDA-toolkit
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
devblogs.nvidia.com/cuda-pro-tip-occupancy-api-simplifies-launch-configuration/
devblogs.nvidia.com/cuda-pro-tip-occupancy-api-simplifies-launch-configuration/
https://github.com/ShaoranLi/GUC

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3120945, IEEE
Transactions on Mobile Computing

17

Brian A. Jalaian (M16) is currently a senior AI
research scientist at Army Research Laboratory
(ARL), AI Test & Evaluation Lead at DoD Joint
Artificial Intelligence Center (JAIC), and an ad-
junct assistant professor in the Bradley Depart-
ment of Electrical and Computer Engineering at
Virginia Tech. He obtained his Ph.D. and MS
degrees in Electrical Engineering in 2016 and
2013, respectively, and an MS in Industrial and
Systems Engineering (Operation Research) in
2014, all from Virginia Tech, Blacksburg, VA. His

research interests are optimization, AI safety and security, robust and
resilient machine learning, and network science. He was a recipient of
the 2019 Fred W. Ellersick MILCOM Award for the Best Paper in the
unclassified technical program.

Stephen Russell is currently the Information Sciences Division Chief
at the Army Research Laboratory. In addition to his research work, he
has taught in the Department of Information Systems & Technology
Management at George Washington University and instructed courses
under the Federal CIO Certificate Program, Management, and Infor-
mation Systems subject areas. Dr. Russell received a B.Sc. in Com-
puter Science and M.S. and Ph.D. degrees in Information Systems
from University of Maryland. He has published over 100 papers in his
primary research areas of decision support systems, machine learning,
systems architectures, and intelligent systems. He has several years of
information technology experience in the telecommunications, health-
care, and manufacturing industries. Dr. Russell has also been a serial
entrepreneur, owning companies that have specialized in software en-
gineering, information resource management services, and telecommu-
nications equipment manufacturing. Currently, his research is focused
on Internet of Things and its applicability to the U.S. Army and the U.S.
Military. He leads the ARL research program on Internet of Battlefield
Things (IOBT), which is focused on multiple challenges of incorporating
IoT ideas and capabilities within the battlefield environment.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:05:35 UTC from IEEE Xplore. Restrictions apply.

