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Abstract—Underlay coexistence is an effective mechanism to
improve spectrum efficiency by having picocells coexist with
macrocell on the same spectrum. Due to a lack of coopera-
tion between the primary users (PUs) in the macrocell and
secondary users (SUs) in the picocell, it is impossible to have
complete knowledge of channel gains between them. Under such
circumstance, chance-constrained programming (CCP) is shown
to be the ideal optimization tool to address such uncertainty.
However, solutions to CCP are computationally intensive and
cannot meet 5G’s timing requirement. To address this problem,
we propose a novel scheduler called GUC (stands for GPU-based
Underlay Coexistence) to find an approximate solution to CCP
in real-time. The essence of GUC is to decompose the original
optimization problem into a large number of small problems
that are suitable for parallel computation on GPU platforms.
Through extensive experiments, we show that GUC reduces the
scheduling computation time by at least 10,000 times comparing
to commercial solvers (on CPU) while achieving an average of
90% optimality.

I. INTRODUCTION

Underlay coexistence is able to improve spectrum efficiency
by allowing concurrent transmission of secondary users (SUs)
on the same spectrum used by the primary users (PUs) [1].
To achieve harmonious coexistence, SUs should control their
transmission powers such that the aggregated interference to
each nearby PU is below a threshold. Under such a model,
the interference channel gains from the SUs to the PUs
are needed for power control. However, in the absence of
feedback from the PUs, the SUs can only measure these
interference channel gains based on channel reciprocity and
known signals (e.g., pilots) whenever overhearing the PUs’
transmission. As a result, accurate knowledge of instantaneous
interference channel gains and their distributions are hardly
available and one can at best obtain and work with their mean
and covariance estimated through long term measurements.

Without knowledge of distributions, there are two possible
approaches: worst-case optimization and chance-constrained
programming (CCP). It is well-known that the performance of
worst-case optimization is overly conservative. CCP resolves
this issue by allowing occasional violation of the interference
threshold as long as such violation is below a small (given)
probability. CCP exploits the fact that in reality, such occa-
sional violations are usually not fatal or even tolerable by the
PUs due to inherent channel coding and human perception
system [2], [3]. By allowing such occasional violations, CCP

promises to achieve much higher efficiency in the presence of
channel uncertainty.

In this paper, we employ CCP to study underlay coexistence
between picocells (for SUs) and a macrocell (for PUs) on
the same spectrum [4], [5]. There are several prior efforts
employing CCP to study underlay problems (see, e.g., [6]–
[10]). A common issue of these prior efforts is that the
computation time of the proposed solutions is too large to
satisfy 5G time resolution. Specifically, the time resolution
for scheduling inside 5G small cells can be as low as 250 µs
with 60 kHz subcarrier spacing [11], [12] while computation
time in existing solutions [6]–[10] ranges from hundreds
of milliseconds to tens of seconds. As a result, none of
the existing solutions to CCP can meet the stringent timing
requirement in 5G scheduling (250 µs).

From an implementation perspective, to achieve the real-
time requirement in a pico BS, a scheduling algorithm must
be implemented on a small size platform with sufficient com-
putation resources. In recent years, GPU has emerged to be
a promising solution due to its ability to reduce computation
time through massive parallel computation. For instance, the
authors in [13] showed that, by exploiting parallel computa-
tion on a GPU platform, it is possible to implement propor-
tional fair (PF) scheduler with near-optimal performance while
meeting 5G’s timing requirement. However, due to several
fundamental differences between these two problems (in terms
of problem settings and mathematical structures), the approach
in [13] cannot be used here.

In this paper, we propose and design a real-time picocell
scheduler for underlay coexistence with channel uncertainty.
Our main contributions are summarized as follows:

• We propose and implement the first solution to CCP for
underlay coexistence that can meet timing requirement
in 5G scheduling.

• Our proposed solution – GPU-based Underlay Coexis-
tence (GUC), decomposes the original problem into a
large number of subproblems by fixing binary decision
variables and choosing a limited number of promising
subproblems based on closed-form metrics and random
sampling. For each subproblem, we propose a fast heuris-
tic solution using decent starting points and scaling-based
local search to find a feasible solution with a very small
number of computation cycles.
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• By implementing GUC on an off-the-shelf NVIDIA
GPU, we demonstrate that GUC reduces computational
time by at least 10,000 times compared to a commercial
solver (Gurobi on CPU) while maintaining an average of
90% optimality.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a two-tier cellular network where several picocells
are deployed inside a macrocell based on underlay coexis-
tence. Each picocell covers a scale of a residential unit (e.g.,
a house) [14]. Users in the macrocell and picocells are consid-
ered as PUs and SUs respectively. The neighboring picocells
are using different fractions of the macrocell’s spectrum in a
non-overlapping fashion to avoid inter-cell interference, which
is known as fractional frequency reuse (see, e.g., [15], [16]).

For a picocell with a small footprint, there is typically only
a small number of nearby PUs. In underlay coexistence, the
burden of interference control solely rests upon the secondary
network, i.e., the picocells. To identify multiple PUs in the
absence of any explicit cooperation, the SUs can exploit
the orthogonal pilots transmitted from the PUs or location
techniques based on existing spectrum sensing algorithms
[17]. We will focus on the case when the SUs are transmitting
to the pico BSs while PUs are receiving from the macro BS as
this is the most challenging scenario for interference control.
It is straightforward to extend the proposed solution to the
cases with other uplink and downlink directions.

Since the picocells are independent of each other, we will
focus on one picocell and maximize the spectrum efficiency
for the SUs inside the picocell while limiting their interference
to each nearby PU. Denote N and J as the number of
SUs in the picocell and its nearby PUs respectively. Suppose
the transmission bandwidth allocated to this picocell is M
resource blocks (RBs). We use the weighted sum of channel
capacity (over all SUs in the picocell) as the objective function
to address both throughput and fairness. We will design a
scheduling algorithm that will be run at the beginning of each
Transmission Time Interval (TTI) to determine how RBs are
to be allocated and the corresponding transmission powers
from the SUs. To meet 5G’s timing requirements, the running
time for the proposed scheduling algorithm must be no greater
than one TTI (250 µs).

Based on this understanding, we may drop the notation of
time for ease of exposition when there is no ambiguity. Denote
a binary variable xm

iB as whether or not SU i will transmit on
RB m (under our scheduling algorithm). That is xm

iB = 1 if
SU i will transmit on RB m and xm

iB = 0 otherwise. The “B”
in the subscript stands for “Base station”. We consider single
user OFDMA where each RB can be assigned to at most one
SU, i.e., ∑

i∈N
xm
iB ≤ 1 (m ∈ M) , (1)

where M denotes the set {1, 2, · · · ,M}.
Denote pmiB as the transmission power of SU i on RB m

and denote Pmax
iB as the maximum transmission power of SU

i. Then the constraints for internal power control are given
by:

0 ≤ pmiB ≤ xm
iBP

max
iB (i ∈ N , m ∈ M) , (2)∑

m∈M
pmiB ≤ Pmax

iB (i ∈ N ) . (3)

where N is the set {1, 2, · · · , N}.
Denote gmij as the interference channel gain from SU i to

PU j on RB m and denote Ij as the interference threshold
for PU j. Under CCP, the interference control (external power
control) from the SUs to the PUs can be formulated as chance
constraints as follows:

P

{∑
i∈N

∑
m∈M

gmij p
m
iB ≤ Ij

}
≥ 1− ϵj (j ∈ J ) , (4)

where J = {1, 2, · · · , J}, P{·} denotes probability and ϵj
is the risk level (probability upper bound) for violation of
interference threshold Ij . A typical value of ϵj ranges from
0.01 to 0.5 depending on the requirement of PU j. In (4), pmiB’s
are optimization variables while interference channel gains
gmij ’s are modeled as random variables. The set of constraints
in (4) states that the aggregate interference from the SUs
to PU j over all RBs should stay below threshold Ij with
a probability of at least 1 − ϵj . For generality, we assume
only the mean and covariance of gmij ’s are known since these
statistics are rather time-invariant compared to instantaneous
values of gmij ’s.

For ease of exposition, we rewrite (4) in the matrix form:

Pgj∼(gj ,Rj)

{
gT
j p ≤ Ij

}
≥ 1− ϵj (j ∈ J ) , (5)

where superscript “T ” denotes transposition. p is a MN × 1
column vector consisting of MN transmission powers from
the SUs (over all RBs) and is given as

p =
[
p11B , · · · , pM1B , p12B , · · · , pM2B , · · · , p1NB , · · · , pMNB

]T
.

(6)
gj is a MN × 1 random column vector and is defined as

gj =
[
g11j , · · · , gM1j , g12j , · · · , gM2j , · · · , g1Nj , · · · , gMNj

]T
,
(7)

which represents MN random interference channel gains
from the SUs (over all RBs) to PU j. gj (a MN × 1 column
vector) and Rj (a MN ×MN matrix) are the known mean
and covariance of gj respectively.

By normalizing the bandwidth of each RB to 1 unit, we
have the following chance-constrained problem formulation:

(P1) max
xm
iB ,pm

iB

∑
i∈N

∑
m∈M

wilog2(1 + hm
iBp

m
iB)

s.t. Deterministic Constraints (1)− (3) ,

Chance Constraints (5) ,

where hm
iB is the transmission channel gain of SU i toward

the pico BS on RB m and wi is the given weight of SU i.
P1 is intractable due to the unknown distribution of gj

in chance constraints (5). An effective method is to sub-
stitute (5) with deterministic constraints. The state-of-the-art
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technique to perform this substitution is called Exact Conic
Reformulation (ECR) [10], which replaces the intractable
chance constraints (5) with convex deterministic constraints
without any relaxations. Comparing to other approaches such
as Chebyshev inequality and Bernstein Approximation, ECR
requires fewer assumptions and offers better performance.
Based on ECR, it can be shown that constraints (5) are math-
ematically equivalent (w.r.t. p) to the following deterministic
constrains [10]:√

1− ϵj
ϵj

√
pTRjp+ gT

j p ≤ Ij (j ∈ J ) . (8)

Replacing (5) with (8) in P1, we have a deterministic maxi-
mization problem as the following:

(P2) max
xm
iB ,pm

iB

∑
i∈N

∑
m∈M

wilog2(1 + hm
iBp

m
iB)

s.t. Deterministic Constraints (1)− (3), (8) .

We can use a commercial solver (e.g., Gurobi on CPU)
to solve P2 and the computational time is on the order
of seconds even for small scale networks (see Section IV).
The fundamental issue with commercial solver is the use of
sequential iterations, which is time-consuming.

III. A NOVEL REAL-TIME SOLUTION

In this section, we present our real-time scheduler – GUC,
which is designed on off-the-shelf GPU platforms. In Section
IV, we will show that GUC offers 10,000 times reduction in
computational time (comparing to Gurobi on CPU) while de-
livering a competitive performance on the objective function.

A. Design Overview

An off-the-shelf GPU typically has thousands of CUDA
cores that can be used to run a large number of tasks in
parallel. To exploit such parallelism on GPU to solve an
optimization problem, the general idea is to decompose the
original problem into a large number of small subproblems
that can be solved in parallel. If the number of subproblems is
too large, we will need to select a subset of these subproblems
to solve (with perhaps some loss in performance). After the
subset of problems is solved, we can pick the best feasible
solution in the hope that it is close to the optimal solution.

Although the above main idea is easy to grasp, how to
accomplish each step successfully is far from trivial and
constitutes the main efforts of our design.

B. Decomposition of P2

There are two sets of decision variables in P2: the bi-
nary variables xm

iB’s for RB allocations and the continuous
variables pmiB’s for transmission powers. Clearly, xm

iB’s are
dominant variables and should be considered first.

Our decomposition of P2 is based on finding all feasible
RB allocations and correspondingly setting xm

iB’s values to 0
or 1. Once xm

iB’s are fixed under a feasible RB allocation, we
have a subproblem instance of P2 that involves only pmiB’s.
By (1) (i.e., RB m can only be allocated to at most one SU),

a feasible solution should have no more than one non-zero
element in set {xm

1B , x
m
2B , · · · , xm

NB}. Denote πm as the SU
that is allocated with RB m. Then we have πm ∈ N for
m ∈ M; xm

iB = 1 if i = πm and xm
iB = 0 otherwise. Denote

π = {π1, π2, · · · , πM} as the indexes of SUs to which the M
RBs are assigned. Clearly, for m ∈ M, pmiB > 0 if i = πm

and pmiB = 0 otherwise. Thus, a subproblem for a given π is:

(P3) max
pm
πmB

∑
m∈M

wπm
log2(1 + hm

πmBp
m
πmB)

s.t.
∑

m∈M,πm=i

pmπmB ≤ Pmax
iB (i ∈ π) (9)√

1− ϵj
ϵj

√
pT
πRπjpπ + gπj

Tpπ ≤ Ij (j ∈ J )

(10)
pmπmB ≥ 0 (m ∈ M) (11)

The M × 1 column vector pπ = [p1π1B
, p2π2B

, · · · , pMπmB ]
T

represents the transmission powers corresponding to a given
RB allocations. Denote a M × 1 random column vector as
gπj = [g1π1j

, g2π2j
, · · · , gMπmj ]

T . Then let gπj (a M×1 column
vector) and Rπj (a M×M matrix) be its mean and covariance
respectively, which are truncated from gj and Rj . Note that
constraints (9) and (10) are modified from constraints (3) and
(8) respectively.

C. Select Subproblems

Since each RB can only be allocated to one SU, the total
number of possible π is NM (enumerating all feasible as-
signments of xm

iB’s). Due to the stringent timing requirement,
we can only compute a subset of subproblems. Denote Kx

as the number of selected subproblems where Kx ≪ NM .
In the rest of this section, we show how to select these Kx

subproblems.
1) Choosing a promising space: The first step is to identify

a “promising” space. A promising space can be defined as a
subspace (within the original problem space) that contains a
set of subproblems with reasonably good (acceptable) perfor-
mance. It is possible that the optimal solution may fall outside
this promising space. But as long as a feasible solution in the
promising space is reasonably good (acceptable), it will serve
our purpose.

To identify such a promising space, we propose to limit
the number of possible RB allocations for each RB from N
to a smaller number, denoted as D, i.e., D < N . Intuitively,
we consider allocating RB m to SU i as a good allocation if
wi and hm

iB are relatively large and gmij is relatively small. To
exploit this idea, for each xm

iB , we define a metric dmiB as

dmiB =
wih

m
iB

um
ij

(i ∈ N , m ∈ M) , (12a)

um
ij =

∑
j∈J

{√
1− ϵj
ϵj

√
||(Rj)((i−1)M+m)∗||1 + gmij

}
,

(12b)
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where (Rj)((i−1)M+m)∗ is the ((i− 1)M +m)-th column of
Rj , || · ||1 is the l1-norm and gmij is the mean of gmij . The
intermediate results of wih

m
iB and dmiB will be stored in GPU

memory for later steps. In (12a), wih
m
iB is the gradient of the

objective function w.r.t. pmiB at pmiB = 0; um
ij is related to the

interference channel gain gmij (with uncertainty), which has a
similar form with (8). Taking both into considerations, we use
a simple division to define dmiB .

After calculating the metrics dmiB for i = 1, 2, · · · , N , we
identify the D largest elements from {dm1B , dm2B , · · · , dmNB} as
dms1B ≥ dms2B ≥ · · · ≥ dmsDB (in descending order). Denote set
Sm
D = {s1, s2, · · · , sD} and we only consider those πm ∈ Sm

D

(instead of N previously). We perform the above procedure
for each RB in parallel and obtain its corresponding promising
set Sm

D . As each RB only has D possible allocations, we have
a promising space S consisting of DM subproblems, i.e.,

π ∈ S = S1
D × S2

D × · · · × SM
D , (13)

where × denotes Cartesian product.
A larger value of D expands the promising space while

a smaller D shrinks the promising space. We propose to
determine a suitable value of D from experiments and in
practice, D can be updated based on historical results. After
solving P2 in the original space and the promising space under
different values of D, we can assess the performance loss
in the promising space, which is a function of D. Then we
pick the smallest D that offers an acceptable (or near-optimal)
performance.

From an implementation perspective, since D is much
smaller than N , we can perform D times of parallel reduction
to obtain Sm

D . Parallel reduction is widely used in GPU
programming [18] to reduce computation time especially for
operations such as finding the maximum (or minimum) or the
sum of some given numbers. In GUC, we will employ parallel
reduction whenever possible to reduce computation time.

2) Sampling: If Kx < DM , we need to perform sampling
to obtain Kx subproblems. Otherwise, we can skip this step.
There are DM events in S and each event corresponds to one
subproblem instance. For an event φ = {φ1, φ2, · · · , φM} ∈
S, we define dφ = d1φ1B

· d2φ2B
· · · dMφMB . Then we assign

event φ with the following probability:

P{φ} =
dφ∑

ϕ∈S

dϕ
(φ ∈ S) . (14)

We then obtain Kx samples following the probabilities
given in (14) and obtain Kx events (subproblems).

D. Solving Subproblems

Each subproblem (in the form of P3) is a convex optimiza-
tion problem with M continuous decision variables pmπmB’s.
A conventional solution approach to solve such a convex
problem is to use gradient-based iterations. However, such an
approach usually requires tens of iterations to converge and
cannot meet the 250 µs timing requirement.

We propose to solve P3 based on decent starting points
and a simple scaling-based local search. Suppose for each

subproblem, we generate Kp starting points (each with M
transmission powers) given by

pk
π =[p1kπ1B , p

2k
π2B , · · · , p

Mk
πMB ]

T (k = 1, 2, · · · ,Kp) , (15a)

pmk
πmB =

wπm
hm
πmB∑

m∈M
wπmhm

πmB

·

∑
j∈J

Ij∑
j∈J

um
πmj

+ δvmk (15b)

=

dmπmB

∑
j∈J

Ij∑
m∈M

wπm
hm
πmB

+ δvmk (m ∈ M) , (15c)

where vmk is a uniformly distributed random variable and δ
is a small positive number that ensures all Kp starting points
are within a sphere. (15c) is easy to calculate since the results
of wπm

hm
πmB and dmπmB are already stored in GPU memory

per our earlier discussion.
However, the starting points in (15) guarantee neither

feasibility nor performance. Thus, we propose a scaling-based
local search to refine each starting point. For simplicity, we
drop the notation of k in the rest of this section. This local
search contains three scaling procedures, as detailed below.

1) First scaling: The i-th constraint in (9) states that the
total transmission power from SU i cannot exceed its device
limit. Given the transmission powers from a starting point, we
calculate the current total transmission power from SU i as

P total
iB =

∑
m∈M,πm=i

pmπmB (i ∈ π) . (16)

We will scale down the transmission powers from SU i only
if P total

iB > Pmax
iB . Thus, the first scaling can be summarized as

pmπmB = pmπmB ·min

{
1,

Pmax
πmB

P total
πmB

}
(m ∈ M) . (17)

After (17), constraints (9) are guaranteed to be feasible
since no SU will exceed its device limit of total transmission
power. Denote π′ = {i : i ∈ π, Pmax

iB ≤ P total
iB } as the set of

SUs who have already reached their device limit, which will
be used in the second scaling.

2) Second scaling: To maximize spectrum efficiency, usu-
ally one of the constraints in (10) should be binding, meaning
the SUs have taken full advantage of the transmission opportu-
nities allowed by PUs. Thus, in the second scaling, in addition
to ensuring the feasibility of constraints (10), we will try to
improve the objective value by scaling up the transmission
powers if possible.

We first calculate the current interference level from the
SUs in π (denoted as Îj) and the average interference from
the SUs in π′ (denoted as Î ′j) as follows:

Îj =

√
1− ϵj
ϵj

√
pT
πRπjpπ + gπj

Tpπ ,

Î ′j =
∑

m∈M,πm∈π′

gmπmjp
m
πmB ,

(18)

where gmπmj is the mean of gmπmj (m-th element of gm
πmj).

We can reduce the computation time of (18) by exploiting the
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symmetric and sparse properties of Rπj . For instance, Rπj is
a diagonal matrix when the interference channel gains gmπmj’s
are independent of each other. In correlated channels, Rπj

can be characterized as a band matrix since the correlation
between two RBs decreases as they are further apart.

There are two cases when comparing current interference
level Îj with the interference threshold Ij .

Case 1: Ij ≤ Îj . This means that j-th constraint in (10) is
not satisfied. We need to scale down all pmπmB’s by Ij/Îj .

Case 2: Ij > Îj . In this case, we can further increase
the transmission powers from the SUs. For those SUs in
set π′, we cannot increase their transmission powers since
they have already reached their device limits. Thus, we will
scale up transmission powers from the SUs in π\π′ by
(Ij − Î ′j)/(Îj − Î ′j).

Specifically, denote λj as the scaling factor obtained from
the j-th constraint of (10) and it is calculated as

λj =


Ij

Îj
if Ij ≤ Îj ,

Ij − Î ′j

Îj − Î ′j
if Ij > Îj .

(19)

We perform the second scaling for RB m as

pmπmB =

{
pmπmB ·min {1, λ1, · · · , λJ} if πm ∈ π′ ,

pmπmB ·min {λ1, · · · , λJ} otherwise .
(20)

After the second scaling based on (20), constraints (10) are
feasible but constraints (9) may not be satisfied. The proof of
this claim is omitted due to space limitation.

3) Third scaling: To ensure constraints (9) holds, we will
repeat the first scaling given by (16) and (17). The obtained
transmission powers will be a feasible solution for the current
subproblem. A key observation is that the third scaling will not
increase transmission powers pmπmB’s and hence constraints
(10) remain feasible. Further, constraints (11) only state the
non-negativity of pmπmB’s, which is trivially true. Thus, we
have reached a feasible solution from a starting point for the
current subproblem and it is a feasible solution for P2 and P1.

By doing the above procedure for all Kx subproblems (each
with Kp starting points) in parallel, we have KxKp feasible
solutions for P2 (and P1) at hand. The feasible solution with
the highest objective value will be the final solution from
GUC.

E. Moving Data between CPU and GPU

Before the decomposition step, we need to transfer data
(parameters) from the CPU memory to GPU memory. After
we find the best solution, we also need to transfer this solution
from the GPU memory back to CPU memory. Since we are
using off-the-shelf GPU, such data transfer will go through
PCIe interface between CPU and GPU. To reduce this data
transfer time, asynchronous data transfer is employed between
CPU and GPU [19].

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we implement our proposed GUC and
conduct experiments to validate its performance. Our perfor-
mance evaluation focuses on elapsed time and objective value
(achievable spectrum efficiency).

A. Implementation Platforms

We implement GUC on NVIDIA Quadro P6000 which
has 3840 CUDA cores. Due to space limitation, we omit
the details of our implementation efforts regarding threads
allocation, memory management, threads synchronization and
kernel functions, etc.

For comparison to CPU platform, we use 16-core Intel
Xeon E5-2687w and obtain a tight upper bound [20] of P2
using Gurobi 8.0.1, which serves as a benchmark in this paper.

B. Experiment Settings

We assume the following input data to GUC are available:
network topology, transmission power limit, thermal noise and
interference threshold. Specifically, the distance between the
macro BS and the pico BS is 400 meters and the radius of the
picocell is 50 meters. The transmission power of macro BS on
each RB is 46 dBm and each SU has a maximum transmission
power of 20 dBm across all RBs. The thermal noise on each
RB is 1×10−7 mW. The pico BS is located at the origin. There
are five PUs (J = 5) near the picocell and the coordinates
of the PUs are (60, 0), (−50, 25), (−40,−40), (10, 55) and
(35,−45) (all in meters). For simplicity, we use the same
interference threshold Ij = 3×10−7 mW for all PUs. The path
loss for macro- and picocells are based on ITU outdoor and
indoor path loss model respectively [4] and we use Rayleigh
fading as the fast fading.

C. Results

The results shown in this section are the average of 500
runs. For each run, we randomly generate the weights wi’s
and the network topology based on uniform distributions.
The weights wi’s are normalized over all SUs so that the
average weight of each SU is 0.1. Based on the above channel
model, we generate one sample of transmission channel gains
hm
iB’s and 10,000 samples of the interference channel gains

gmij ’s. The 10,000 samples of gmij ’s are used to calculate the
mean gj and covariance Rj . Although GUC also works under
correlated channels, due to space limitation, we only show
results when gmij ’s are independent with each other.

1) Moderate Size: We consider a moderate size picocell
with 10 SUs and 16 RBs (i.e., N = 10,M = 16). For the
design parameter D, we set D = 2 as it can maintain 99%
optimality on average. We choose 32 subproblems for each
run (Kx = 32) and use 64 different starting points (Kp = 64)
for each subproblem with δ = 0.2.

Fig. 1 shows our experimental results. A snapshot of 100
runs is shown in Fig. 1(a). The computational time of GUC
is 99.5 µs on average (with 6.0 µs standard deviation). The
maximum computational time of GUC is no more than 150
µs. In contrast, the computational time on CPU is ∼ 106 µs,
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Fig. 1: GUC’s performance when N = 10 and M = 16.
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Fig. 2: GUC’s performance when N = 20 and M = 32.

which is about 10, 000 longer than that of GUC. Fig. 1(b)
shows GUC’s performance in achievable objective values. It
shows that GUC can achieve >90% optimality on average.
(with 2.7% standard deviation). We also verify that the actual
threshold violation probability of each PU is indeed smaller
than the risk level.

2) Large Size: We also test a large size picocell with N =
20 and M = 32. Under the setting of a picocell, such scale
can represent the extreme case. The design parameters are the
same with that in moderate size setting, i.e., D = 2, Kx = 32,
Kp = 64, δ = 0.2. The results are shown in Fig. 2.

Fig. 2(a) is a snapshot of 100 runs. The computational
time of GUC is 131.6 µs on average (with 4.3 µs standard
deviation). All computational times of GUC are smaller than
150 µs while that on CPU is ∼ 107 µs, which is over 10, 000
times greater than that of GUC. The achievable spectrum
efficiency shown in Fig. 2(b) is 89.5% within the upper bound
on average (with 3.5% standard deviation).

V. CONCLUSIONS

In this paper, we studied underlay coexistence and em-
ployed CCP to address channel gain uncertainty. To ensure
that the computational time of a solution can meet 5G’s real-
time requirement, we designed and implemented GUC on
GPU platforms. By solving subproblems in parallel on a large
number of GPU cores, GUC successfully achieved an overall
computation time under 150µs – a 10,000 times reduction in
computation time. Further, the objective values achieved by
GUC is 90% of the upper bound of optimal objectives on
average. Our design is the first practical solution to solve the
CCP problem for underlay coexistence in real-time.
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