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Abstract—Age of Information (AoI) is a metric that can be
used to measure the freshness of information. Since its inception,
there have been active research efforts on designing scheduling
algorithms to AoI-related problems. These problems vary in
specific AoI-based objectives and network settings. For each
problem, typically a custom-designed scheduler was developed.
Instead of following the (custom-design) path, we envision and
pursue a general framework that can be applied to design a wide
range of schedulers to solve AoI-related problems. As a first step
toward this vision, we present a general framework—Eywa, that
can be applied to construct high-performance schedulers for a
family of AoI-related optimization and decision problems, all
sharing a common setting of an IoT data collection network.
We show how to apply Eywa to solve three important problems:
to minimize weighted sum of AoIs, to minimize bandwidth re-
quirement under AoI constraints, and to determine the existence
of feasible schedulers to satisfy AoI constraints. We show that
for each problem, Eywa can either offer a stronger performance
guarantee than the state-of-the-art algorithms or provide new (or
general) results that are not available in the literature.

I. INTRODUCTION

Age of Information (AoI) is a metric that can be used
to measure the freshness of information. It is defined as the
elapsed time period between the present and the time when the
information (a sample) was generated. Since the AoI concept
was introduced by Kaul et al. [1], [2], there has been a
growing body of research on designing scheduling algorithms
to optimize AoI-related objectives (see, e.g., [3]–[29]).

The optimization objectives in these works include: mini-
mize average/peak AoI (e.g., [4]–[12], [15], [19], [27], [28]),
to minimize transmission bandwidth under AoI constraints
(e.g., [26]), to determine the existence of feasible schedulers
to satisfy AoI constraints (e.g, [24], [25]), and to optimize
variants of the AoI metric (e.g., [20]–[22]), among others.
Many different network settings (scenarios) have been consid-
ered, including IoT data collection (e.g., [10]–[14], [22]–[28]),
queuing systems (e.g., [4], [8]), cache systems (e.g., [3], [20]),
and so on.

For each of these AoI problems, typically a custom-designed
scheduler was proposed. With so many custom-designed AoI
schedulers around, it is important to explore the intrinsic
connections among these problems and proposed solutions
and extract some important properties for fundamental under-
standing. More important, it is desirable to develop a general
framework that can be applied to design a wide range of

IoT source nodes

Wireless channel

Cellular Base station (BS)

Figure 1: System model: N source nodes collect information
and send it to a BS.

schedulers.1

In this paper, we make a first attempt to develop such as
a general framework—code-named Eywa2. Eywa considers a
data collection network setting (Fig. 1) and can be applied to
construct high-performance schedulers for a family of AoI-
related optimization and decision problems in this network
setting. The problems that we have identified so far include:
to minimize sum of AoIs, to minimize bandwidth under
AoI constraints, and to determine the existence of feasible
schedulers to satisfy AoI constraints. Other problems to which
Eywa may be applied will be addressed in a future paper.

The core of Eywa hinges upon the notion of Almost Uniform
Scheduler (AUS)—a unique type of cyclic schedulers where
the transmission pattern of each source node is at least nearly
uniform. Another core idea in Eywa is a clever use of the so-
called step-down rate vectors, which can be used to construct
AUS-based schedulers efficiently. We will elaborate the details
of these two ideas in Section II.

The general framework of Eywa consists of three steps. The
first step is to transform the original (AoI-based) objective
function and/or the constraints to a rate-based objective func-
tion and rate-based constraints. The second step is to find
the optimal step-down rate vector by solving an optimization
problem with the rate-based objective function and constraints.
The third step is to construct an AUS-based scheduler using
the optimal step-down rate vector.

1The vision of this general framework for AoI research came from co-
author Y.T. Hou’s early work on Internet QoS scheduling [30] and asymptotic
capacity analysis in wireless networks [31], [32].

2Eywa is the guiding force of life and deity of Pandora and the Na’vi (from
movie Avatar).
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We put the Eywa framework in action by solving a family
of AoI-related problems in the literature: to minimize sum of
AoIs [27]–[29], to minimize bandwidth under AoI constraints
[26], and to determine the existence of feasible schedulers to
satisfy AoI constraints [24], [25]. We show that for each prob-
lem, Eywa can either offer a stronger performance guarantee
than state-of-the-art algorithms, or provide new/general results
that are not available in the literature.

The remainder of this paper is organized as follows. In
Section II, we present the general framework of Eywa and
elaborate its three steps in details. In Sections III to V,
we apply the Eywa framework to solve several problems.
Specifically, in Section III, we apply Eywa to find a scheduler
that minimizes the weighed sum of AoIs. In Section IV,
we apply Eywa to find schedulers that minimize bandwidth
requirement under peak and average AoI constraints, respec-
tively. In Section V, we apply Eywa to solve a decision
problem, i.e., to determine the existence of feasible schedulers
to satisfy hard/soft AoI deadlines. Section VI summarizes this
paper.

II. EYWA: A GENERAL APPROACH

In this section, we present a general approach—code-named
Eywa—to construct high-performance cyclic schedulers for
many AoI optimization problems. By “high-performance”
we mean some strong theoretical guarantees, either w.r.t the
optimal objective value or some schedulability conditions. The
types of AoI optimization problems that Eywa may be applied,
include (but not necessarily limited to):

1) Min-Sum: Minimize (weighted) sum of AoI;
2) Min-BW: Minimize bandwidth requirement under AoI

constraints;
3) Decision Problems: Determine the existence of feasible

schedulers to satisfy AoI constraints.

A side benefit of Eywa is that its schedulers follow a “fixed”
cyclic transmission pattern and do not require the BS to convey
its scheduling decisions in every time slot. This will lower
communication overhead in the control channel as well as
reduce delay (the time to send the scheduling decision from
the BS to each source).

A. System Model

Consider a data collection network where N source nodes
collect information from the environment and send it to a base
station (BS) through a shared wireless channel, as shown in
Fig. 1. Tables I lists key notations used in this paper.

We assume time is slotted, and each source node takes a
sample at the beginning of each time slot. If scheduled for
transmission, a source will send its freshest sample (collected
at the beginning of the time slot) to the BS.

Denote W as the transmission bandwidth of the wireless
network. The wireless channel allows at most W samples
to be transmitted in each time slot, and the BS scheduler
needs to decide which samples will be chosen for transmission.

Table I: Notations

Symbol Definition

General Notations
Ai(t) AoI for sample from source node i at the BS at time t

W Transmission bandwidth.
c Cycle length for a cyclic scheduler
di AoI deadline for source node i

N Number of source nodes in the network
πi(t) Scheduling decision for source i at time t

pi Packet loss rate for source i

pmax The largest one among all pi’s
qi(t) Channel indicator for source i at time t

ri Average transmission rate w.r.t. source node i

Ui(t) Generation time of the most recent sample at the BS from
source node i at time t

Notations for Min-Sum
Āi Long-term average AoI for source i

Ā Weighted sum of all Āi’s
ĀLB A lower bound for Ā
Ā∗ Minimum Ā for all schedulers
rLB Optimal solution to OPT-LB
wi Weight for source i

Notations for Min-BW
αi Threshold for average AoI for source i

α A vector denoting [α1, α2, · · · , αN ]

W ∗ Minimum W for all feasible schedulers
di Threshold for peak AoI for source i

d A vector denoting [d1, d2, · · · , dN ]

Notations for Decision Problems
di (Hard or soft) AoI deadline for source i

d A vector denoting [d1, d2, · · · , dN ]

ϵi Violation tolerance rate for source node i’s AoI deadline
ϵ A vector denoting [ϵ1, ϵ2, · · · , ϵN ]

l(d) System load for d under hard AoI deadlines
l(d, ϵ,p) System load for (d, ϵ,p) under soft AoI deadlines
pi Packet loss rate for source node i

p A vector denoting [p1, p2, · · · , pN ]

For scheduler π, we denote πi(t) ∈ {0, 1} as the scheduling
decision at time t w.r.t. each source i (i = 1, 2, · · · , N ), i.e.,

πi(t) =

{
1, if source i is scheduled to transmit at time t,
0, otherwise.

(1)
For any scheduler π, at any t = 0, 1, 2, · · · we have

N∑
i=1

πi(t) ≤ W. (2)

The long-term average transmission rate, ri for source i, can
be defined as:

ri = lim
T→∞

1

T

T∑
t=1

πi(t). (3)

Then we have

ri ≤ 1, for i = 1, 2, · · · , N, (4a)

2



N∑
i=1

ri ≤ W. (4b)

We consider unreliable wireless channel in our model. We
assume there is a (fixed) packet loss rate (due to transmission
failure) for each source node i, which we denote as pi. With
the presence of packet loss rate, the transmission from a
source may not always be successful. Denote qi(t) as a binary
indicator for whether or not the transmission from source i at
time t (if scheduled) is successful, i.e.,

qi(t) =


1, if transmission from i is successful at t

(should i be scheduled for transmission),
0, otherwise.

Then we have

P{qi(t) = 0} = pi,

P{qi(t) = 1} = 1− pi.

The AoI of source i (at the BS) at time t, denoted by Ai(t),
is defined as the elapsed time between the current time t and
Ui(t)— the sample’s generation time at its source, i.e.,

Ai(t) = t− Ui(t). (5)

If the BS does not receive a sample from source i in time t
(i.e., πi(t) = 0 or qi(t) = 0), then by definition of AoI, at
time (t + 1) we have Ai(t + 1) = Ai(t) + 1. Otherwise, the
AoI will drop to 1. We have,

Ai(t+ 1) =

{
1, if πi(t) · qi(t) = 1,

Ai(t) + 1, otherwise.
(6)

B. Main Idea: Almost Uniform Scheduler

Eywa focuses on a special class of cyclic schedulers,3 which
we call Almost Uniform Schedulers (AUSs). The concept of
AUS first appeared in our previous work [25] for the special
case of unit channel bandwidth (i.e., W = 1). The AUS that
we present here is general and can be applied to arbitrary
channel bandwidth (W ≥ 1).

Denote τki as the time slot when the k-th sample (k =
1, 2, · · · ) from source i is scheduled for transmission, i.e.,
πi(τ

k
i ) = 1. Denote T k

i as the time interval between the k-th
and the (k + 1)-th transmission for source i, i.e.,

T k
i = τk+1

i − τki . (7)

Then, AUS is defined as the following.

Definition 1 A cyclic scheduler π is an AUS if for each source
i there exists an integer bi such that we have either T k

i = bi
or T k

i = bi + 1 for any k ≥ 1.

3A cyclic scheduler repeats the same scheduling decisions every c time
slots (where c is the cycle length). More formally, a scheduler π is cyclic if
there exists an integer c such that πi(t) = πi(t + c) for all i’s and t ≥ 0.
Cyclic schedulers do not require the BS to convey its scheduling decisions in
every time slot, which will i) lower communication overhead in the control
channel, and ii) reduce the delay for sending the scheduling decision to the
sources.

For example, consider four sources A, B, C, and D. Denote
“(· · · )” as scheduling decisions for one cycle. Then when
W = 1, the scheduler

(ABABCABDABC)

is an AUS with bA = 2, bB = 2, bC = 5, and bD = 11. Note
that for source C, bC = 5 because the interval length between
the last transmission in this cycle and the first transmission in
the next cycle is 5.

As the second example, when W = 2 [where for each
time slot, 2 samples from 2 source nodes (a column in the
scheduling bracket) are transmitted to the BS], the scheduler(

ACBACBBADBA
BADBAACBACB

)
is an AUS with bA = 1, bB = 1, bC = 2, and bD = 5.

We also identify a special case of AUS, which we call Exact
Uniform Scheduler (EUS). We say an AUS is an EUS if for
each source i, we have T k

i = bi for all k ≥ 1. That is, each
source i is periodically scheduled for transmission with an
exact period of bi.

C. Eywa: Complete Procedure

Eywa is designed to solve a family of AoI optimization
problems and decision problems, including Min-Sum, Min-
BW, and the decision problems that we listed in the beginning
of Section II. Although these problems have different objec-
tives and constraints, they all conform to the system model
as described in Section II-A. As such, we have discovered
the following framework (Eywa) that can be used to custom
design a high-performance AUS-based scheduler for each of
these problems. Our proposed Eywa framework is given in
Algorithm 1.

Algorithm 1 A General Framework of Eywa

1: Transform objective function and constraints: If the
original objective function and/or the constraints are not
rate-based (e.g., AoI-based), then transform them to a rate-
based objective function and rate-based constraints.

2: Find optimal transmission rates: Find the optimal trans-
mission rates by solving an optimization problem (OPT-
SD) with the rate-based objective function.

3: Construct an AUS-based scheduler: Construct an AUS-
based scheduler using the optimal transmission rates.

Eywa (Algorithm 1) consists of three steps. In the rest of
this section, we elaborate the details in each step.
Step 1: Transform objective function and constriants The
essence of Eywa is to design an AUS-based scheduler based
on each source i’s transmission rate ri. We start with the
objective function. Since the original objective function may
not be rate-based (e.g., AoI-based), the first step of Eywa is
to transform the original objective function to a rate-based
objective function.
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We denote Jo(·) as the original objective function that
we want to minimize.4 For example, Jo(·) could be a func-
tion of AoIs, i.e., Jo(·) = Jo

(
A1(t), A2(t), · · · , AN (t)

)
=

limT→∞
1
T ·

∑T
t=1

∑N
i=1 wiAi(t) as in the Min-Sum problem.

We will transform Jo(·) to a rate-based objective function,
which we denote as JR(r1, r2, · · · , rN ). The goal of this
transformation is to minimize the distance (gap) between the
two functions such that

Jo(·) ≈ JR(r1, r2, · · · , rN ). (8)

Similarly, if any of the original constraints are not rate-
based, then transform them into rate-based constraints.
Step 2: Find optimal transmission rates The goal of
Step 2 is to find the transmission rates ri’s that optimize
JR(r1, r2, · · · , rN ). In particular, we solve a special optimiza-
tion problem (OPT-SD) that will ensure the optimal rates (ri’s)
can be readily used for the design of AUS-based schedulers
in Step 3.

Denote the transmission rate vector r = [r1 r2 · · · rN ]. We
define a sorted rate vector γ = [γ1 γ2 · · · γN ] as:

γ = sort(r), (9)

where sort(·) is a function that sorts the elements of the input
vector in a non-increasing order. We are interested in γ’s with
a special “step-down” property, which we define as follows:

Definition 2 A sorted vector γ is step-down if γi/γi+1 ∈ N∗

for all γi < 1 and i < N .

In a step-down vector, the leading elements in γ can be
1’s, while the remaining elements (with γi < 1) must satisfy
γi/γi+1 ∈ N∗. For example, γ = [1 1 4

5
4
5

2
5

1
5 ] is step-down.

We now solve the following optimization problem:

OPT-SD: min
r

JR(r1, r2, · · · , rN )

s.t. γ = sort(r),
γ is step-down,
N∑
i=1

γi = W,

Additional problem-specific rate-based
constraints,
0 < ri ≤ 1, i = 1, 2, · · · , N.

Note that we purposely make
∑N

i=1 γi = W (instead of ≤ W )
so that the rates will fit perfectly into a discrete slot-based
scheduler.

Denote the optimal solution to OPT-SD as r∗ =
[r∗1 r∗2 · · · r∗N ]. After solving OPT-SD and obtaining r∗, we
will use r∗ to construct an AUS in Step 3.
Step 3: Construct an AUS-based Scheduler The goal
of Step 3 is to construct an AUS-based scheduler using the
optimal rate vector r∗ that we find in Step 2.

4We focus on a minimization problem here to concretize our discussions.
Note that a maximization problem can be easily reformulated as a minimiza-
tion problem, i.e., minimize the negative of the objective function.

We first consider the special case where W = 1 and present
an algorithm on how to construct an AUS-based scheduler
with r∗ (with

∑N
i=1 r

∗
i = 1) and γ∗ = sort(r∗) is step-down.

We use an example to show how our algorithm works. The
complete pseudocode is given in Algorithm 2.5

Example 1. Consider six sources A, B, C, D, E, F and
r∗ = [ 1

10
3
10

1
10

3
10

1
10

1
10 ]. We have γ∗ = [ 3

10
3
10

1
10

1
10

1
10

1
10 ],

which is step-down, and we have
∑N

i=1 r
∗
i = 1. We will show

how to construct an AUS for this r∗.
Denote cAUS as the cycle length of the AUS we are going

to construct, and Ni as the number of slots allocated to the
i-th source (indexed w.r.t. γ∗) in cAUS. Clearly, we have Ni =
γ∗
i · cAUS.
In this example, the sequence of the sources in γ∗ is B-D-

A-C-E-F . Since the smallest rate among the γ∗
i ’s is 1/10 (for

source F ), we set the cycle length of the AUS to cAUS = 10.
Then we have NB = 3, ND = 3, NA = 1, NC = 1, NE = 1,
and NF = 1.

Let’s start with the first source B. Within a cycle with
cAUS = 10 slots, there are NB = 3 slots allocated to source B.
Ideally, we want the 3 slots to be evenly spaced in 10 slots.
But this is not possible under 10 slots. So we will add the
minimum number of slots (which is 2) to the cycle to make
this happen. This corresponds to adding (⌈ cAUS

NB
⌉ ·NB − cAUS)

extra slots. These extra slots will be removed in the end when
we change the EUS scheduler to an AUS scheduler. With a
cycle of 12 slots (c = 12), we can place source B evenly as
follows:

π (B □ □ □ B □ □ □ B □ □ □)
t 1 2 3 4 5 6 7 8 9 10 11 12

Now we we consider the second node—D. With ND = 3,
we can place D evenly among the empty slots left by B.
Among the empty slots (t = 2, 3, 4, 6, 7, 8, 10, 11, 12), we
select the time slots with the smallest number of elapsed time
slots following its predecessor node B, i.e., t = 2, 6, 10. We
allocate all of them (t = 2, 6, 10) to source D, and we have:

π (B D □ □ B D □ □ B D □ □)
t 1 2 3 4 5 6 7 8 9 10 11 12

The next source node to consider is A. Since NA = 1, we
only need to allocate 1 empty slot to source A. Among all the
remaining empty slots, we want to find one with the shortest
distance (in number of time slots) to A’s predecessor nodes,
starting from the oldest one (node B). The time slots with the
shortest distance to B are: t = 3, 7, 11. Among them (t =
3, 7, 11), we select the time slots with the shortest distance to
D and we still have: t = 3, 7, 11. Since we only need one slot,
we choose t = 3 to A.

π (B D A □ B D □ □ B D □ □)
t 1 2 3 4 5 6 7 8 9 10 11 12

5This algorithm is based on our previous work in [25] which checks the
schedulability of a given set of AoI deadlines and violation tolerance rates.
That problem is referred as the “Max-Region under soft AoI deadlines”
problem in this paper.
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Algorithm 2 Construct an AUS-based Scheduler with W = 1

Input: A step-down vector γ(1) with
∑N

i=1 γ
(1)
i = 1.

Output: An AUS-based scheduler π(1).
1: Set cAUS = 1/γ

(1)
N and Ni = γ

(1)
i · cAUS for each 1 ≤ i ≤

N .
2: Initialize an EUS cycle with length c = ⌈ cAUS

N1
⌉ ·N1 slots.

3: Set b1 = c/N1. Allocate time slots t = 1, b1 + 1, 2b1 +
1, · · · , c − b1 + 1 in the EUS cycle to the first source in
γ.

4: for source i = 2, 3, · · · , N in γ do
5: Let S0 be the set of empty time slots in the EUS cycle.
6: for j = 1, 2, · · · , i− 1 do
7: Let Sj be the subset of Sj−1 containing time slots

with the shortest distance after a source j.
8: end for
9: Let τ be the first slot in Si−1. Set bi = c/Ni. Allocate

slots t = τ, bi + τ, 2bi + τ, · · · , c− bi + τ to source i.
10: end for
11: Remove the (c− cAUS) unassigned time slots in the EUS

cycle and output the resulting scheduler π(1).

The next source node to consider is C. Since NC = 1, we
only need to allocate 1 empty slot to source C. Again, among
all the remaining empty slots, our goal is to find one with the
shortest distance to C’s predecessor nodes (B, D, A), starting
from the oldest one (node B). With respect to each B in the
cycle, the time slots with the shortest distance (on the right
side) are: t = 7, 11. Between the two (t = 7, 11), we want
to select the time slots with the shortest distance to a D and
we still have: t = 7, 11. Now between the two (t = 7, 11),
we want to select one time slot with the shortest distance to
A and we only have one choice, which is t = 7. We allocate
t = 7 to C. Note that the above process can be put into an
iteratively procedure (as shown in Steps 4–10 in Algorithm
2).

π (B D A □ B D C □ B D □ □)
t 1 2 3 4 5 6 7 8 9 10 11 12

Following the same token, we allocate t = 11 to source E
and t = 4 to source F and we have:

π (B D A F B D C □ B D E □)
t 1 2 3 4 5 6 7 8 9 10 11 12

Clearly, outcome of our recursion will ensure the scheduler
is an EUS throughout the process. In the last step, we remove
the unused slots in the EUS scheduler and obtain an AUS
scheduler π(1). We have:

π(1) (B D A F B D C B D E )
t 1 2 3 4 5 6 7 8 9 10

The ideas of Example 1 are stated as pseudocode in Algo-
rithm 2. The time complexity of Algorithm 2 is O(N2/γN ).

Now we extend Algorithm 2 to the general case when W ≥
1. The problem is to construct an AUS scheduler π(M) for a
step-down vector γ with

∑N
i=1 γi = W .

𝜋(1) for W = 1

𝜋(3) for W = 3

Figure 2: An example for Zigzag packing

Algorithm 3 Construct an AUS-based Scheduler with W ≥ 1

Input: A step-down vector γ with
∑N

i=1 γi = W .
Output: An AUS-based scheduler π(W ).

1: For each source node 1, 2, · · · ,M , allocate every slot to
them and get an EUS π(M) with bandwidth M .

2: For other source nodes, set γ′ = [γM+1 γM+2 · · · γN ].
Set γ(1) = γ′/(W − M). Construct an AUS scheduler
π(1) by Algorithm 2 with γ(1) as input.

3: If W −M > 1, use Zigzag packing to construct an AUS
scheduler π(W−M) with bandwidth (W −M).

4: Combine π(M) and π(W−M), and get AUS π(W ).

Denote M as the number of elements in γ such that γi = 1.
For each source node 1, 2, · · · ,M , we allocate every slot to
them and get an EUS π(M) with bandwidth M .

For other source nodes, denote γ′ = [γM+1 γM+2 · · · γN ],
and the problem is to construct an AUS π(W−M) for γ′ with
bandwidth (W − M). To solve this problem, the idea is to
first construct an AUS-based scheduler π(1) using Algorithm 2
for the special case W = 1. Since Algorithm 2 requires∑N

i=1 γ
(1)
i = 1, we have to scale down γ by a factor (W−M),

i.e., γ(1) = γ′/(W − M). Clearly, we have
∑N

i=1 γ
(1)
i = 1,

and we can use Algorithm 2 to construct π(1).
With π(1) as the basic building block, we use a procedure

called Zigzag packing to construct the final AUS scheduler
π(W−M) by packing scheduler π(1) column-by-column into a
frequency-time grid exactly W times. We use an example to
show how it works.

Example 2. Consider six sources A, B, C, D, E, F ,
W = 3, and r = [ 3

10
9
10

3
10

9
10

3
10

3
10 ]. We have γ =

[ 9
10

9
10

3
10

3
10

3
10

3
10 ], which is step-down,

∑N
i=1 γi = 3, and

M = 0. We now show how to construct an AUS scheduler
π(3) for this γ.

As the first step, we scale down γ by a factor 3, and get
γ(1) = [ 3

10
3
10

1
10

1
10

1
10

1
10 ], with

∑N
i=1 γ

(1)
i = 1. Then we

use Algorithm 2 to find AUS π(1) with γ(1) as input, which
is identical to Example 1. To construct π(3), we roll π(1) into
π(3)’s frequency-time structure column-by-column 3 times, as
shown in Fig. 2, and obtain the AUS scheduler π(3).

After obtaining π(M) and π(W−M), we can combine them
and get our target AUS π(W ) with bandwidth W . A pseu-
docode on how to construct an AUS-based scheduler is given
in Algorithm 3. This completes Step 3 of Eywa.
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Now we have presented all details for the three steps of our
proposed Eywa framework. In the rest of this paper, we put this
framework in action by solving a family of AoI optimization
and decision problems.

III. APPLICATION TO THE MIN-SUM PROBLEM

In this section, we show how to use Eywa to solve Min-
Sum problem that we mentioned in the beginning of Section II.
Then we will compare Eywa’s scheduler with the state-of-the-
art.

A. Problem Statement

The network setting for Min-Sum is the same as that in
Section II-A. We consider a general W ≥ 1. The long-term
average AoI for source node i is defined as:

Āi = lim
T→∞

1

T

T∑
t=1

Ai(t). (10)

Denote wi as the weight of source node i. The weighted sum
of long-term average AoI over all source nodes, denoted as
Ā, is defined as:

Ā =

N∑
i=1

wiĀi. (11)

The objective for the Min-Sum problem is to design a sched-
uler π that can minimize Ā.

B. A Lower Bound

To date, there is no known polynomial time optimal sched-
uler for the Min-Sum problem in the literature. This is partially
due to pi (packet loss probability) associated for each source,
which make it hard to prove optimality. As such, a lower bound
for the objective Ā is important because it can serve as a
performance benchmark (in place of the optimal objective).

In [3], the authors showed that for each source i, we have

wiĀi ≥
wi

2(1− pi)ri
+

wi

2
. (12)

Therefore, min
∑N

i=1 wiĀi ≥ min
∑N

i=1(
wi

2(1−pi)ri
+ wi

2 ).
So we solve the following optimization problem:

OPT-LB: min
r

N∑
i=1

wi

2(1− pi)ri

s.t.
N∑
i=1

ri ≤ W,

0 < ri ≤ 1, i = 1, 2, · · · , N.

Denote rLB = [rLB
1 , rLB

2 , · · · , rLB
N ] as the optimal solution to

OPT-LB. Since OPT-LB is a convex optimization problem, we
can get rLB easily. Then, by (12), a lower bound of Ā is given
by

ĀLB =

N∑
i=1

wi

2(1− pi)rLB
i

+

N∑
i=1

wi

2
. (13)

C. Eywa: Step 1—Transform Objective Function and Con-
straints

In this and the following two sections, we show how to
apply Eywa framework to find a high-performance scheduling
solution to the Min-Sum problem. As presented in Section
II-C, the first step of Eywa is to transform the AoI-based ob-
jective function Jo

(
A1(t), A2(t), · · · , AN (t)

)
=

∑N
i=1 wiĀi

to a rate-based objective function JR(r1, r2, · · · , rN ). For the
Min-Sum problem, we will approximate Āi as a rate-based
function qi(ri), i.e., Āi ≈ qi(ri) for each i. Then we will
have JR(r1, r2, · · · , rN ) =

∑N
i=1 wi · qi(ri).

Consider an AUS π. To make a connection between Āi

and qi(ri), we propose to decompose the AUS scheduler into
two mini EUS schedulers, for which we can calculate the AoI
easily and express it as a rate-based function. We will use an
example to show how this work.

Example 3. Consider an AUS π with W = 1:

π = (BDAFBDCBDE).

We use source B as an example. To find ĀB , we decompose
π into two mini EUSs. We consider the simple case where
packet loss rate pB = 0 first.

Since we are only interested in calculating source B’s
average age, ĀB , we focus on the time slots that source B
are scheduled for transmission, i.e.,

π0 = (B□□□B□□B□□).

In scheduler π0, we notice that there are three elapsed
intervals w.r.t. source B in the cycle: 4, 3, and 3. So we can
decompose π0 into two EUSs π1 and π2 as following:

π1 = (B□□□), π2 = (B□□B□□).

Denote Ā1
B and Ā2

B as the average AoIs under EUS π1 and
π2, respectively. Clearly, we have Ā1

B = 5
2 (average of 1, 2,

3, and 4) and Ā2
B = 2 (average of 1, 2, 3). Denote qB(rB) as

the weighted average (proportional to mini-cycle length) AoI
of two mini EUS π1 and π2. Since there are 4 slots in π1 and
6 slots in π2, qB(rB) is given by

qB(rB) =
4 · Ā1

B + 6 · Ā2
B

4 + 6
=

4 · 5
2 + 6 · 2
10

=
11

5
.

For a general π with rate ri and pi = 0 for each i, we
now show how to find qi(ri) based on the idea presented in
Example 3. We first focus on the time slots that source i are
scheduled for transmission and get π0. Under π0, the interval
length for source i can only be either ⌊ 1

ri
⌋ or ⌊ 1

ri
⌋+1, where

⌊·⌋ is the floor function. Then we decompose π0 into two
mini EUSs π1 and π2. Denote qi(ri) as the weighted average
(proportional to mini-cycle length) AoI of π1 and π2. It is not
hard to derive the following expression:

qi(ri) = ⌊ 1
ri
⌋+ 1− ri

2
(⌊ 1
ri
⌋2 + ⌊ 1

ri
⌋), (for pi = 0). (14)
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For the general case where pi ≥ 0, it can be shown (by taking
expectations) that

qi(ri) =
1 + pi
1− pi

·
(
⌊ 1
ri
⌋+ 1

2
− ri

2
(⌊ 1
ri
⌋2 + ⌊ 1

ri
⌋)
)
+

1

2
. (15)

Note that when packet loss rate pi = 0, qi(ri) is exactly
equal to Āi. But when pi > 0, qi(ri) will be slightly greater
than Āi. This is because there is a slight relaxation for AoI
when we decompose AUS π0 into two mini EUSs π1 and π2.

D. Eywa: Step 2—Find Optimal Transmission Rates

The second step of Eywa is to find the optimal rate
vector r∗. That is, we need to solve OPT-SD, with objective
JR(r1, r2, · · · , rN ) =

∑N
i=1 wi · qi(ri). Note that there are no

additional constraints in OPT-SD for the Min-Sum problem.
Due to the complexity of the rate function qi(ri) in (15),

it is too difficult to solve OPT-SD directly. So we present an
algorithm that can find a (provably) near-optimal solution to
OPT-SD.

Our proposed near-optimal solution is based on rLB, the
optimal solution to OPT-LB. Since rLB may not be a feasible
solution to OPT-SD, we propose to find a β (0 < β ≤ 1)
and r, such that r ≥ β · rLB (i.e., ri ≥ β · rLB

i for each
i = 1, 2, · · · , N ) and r is step-down and feasible to OPT-SD.
Clearly, the greater the β is, the closer the r and rLB will be.
So we want to solve the following optimization problem:

OPT-β: max
r,β

β

s.t. γ = sort(r),
γ is step-down,

β · rLB
i ≤ ri ≤ 1, i = 1, 2, · · · , N,

N∑
i=1

γi = W.

Denote r∗ and β∗ as the optimal solution to OPT-β. Clearly,
r∗ is feasible to OPT-SD, which we will use to construct
an AUS-based scheduler in Step 3. An algorithm (based on
bisection and dynamic programming) to solve OPT-β is given
in Appendix A.

E. Eywa: Step 3—Construct AUS

The third step of Eywa is to construct AUS based on
r∗, which is exactly the same as what we have done in
Section II-C.

F. Performance and Comparison with State-of-the-Art

In this section, we show that Eywa offers a strong theoretical
performance guarantee to the Min-Sum problem. Denote pmax

as the maximum packet loss rate among all source nodes, i.e.,

pmax = max
i=1,2,··· ,N

pi.

Denote Ā∗ as the optimal (unknown) objective value for
the Min-Sum problem. We have the following theorem that
guarantees the performance of Ā—the objective value obtained
by Eywa.

Theorem 1 When pmax ≤ 0.807, the objective value obtained
by Eywa satisfies:

Ā ≤ (1 + pmax) log2 e · Ā∗. (16)

A proof of Theorem 1 is given in Appendix B.
In practice, 4G LTE and 5G NR (eMBB) use link adaption

algorithms to make sure the BLER (packet loss rate) is about
10% for each user [33]. For pmax = 0.12, we have Ā ≤
1.62 · Ā∗ under Eywa.

Table II compares the performance guarantees offered by
Eywa and the state-of-the-art algorithms for the Min-Sum
problem. When W = 1, three solutions were proposed ([27],
[29](Ch. 3)): the stationary randomized scheduler, the max-
weight scheduler, and the Whittle’s index scheduler. We can
see that in practice (when pmax = 0.12), Eywa offers a tighter
bound than the other three schedulers. When W ≥ 2, the
max-weight scheduler and the Whittle’s index scheduler are
not available in the literature, while the stationary randomized
scheduler was studied in [28] and [29] (Ch. 4). Again, we can
see that in practice (when pmax = 0.12), Eywa offers a tighter
bound than the stationary randomized scheduler.

In addition to offering a stronger performance guarantee,
Eywa also has a lower overhead and latency than the state-
of-the-art schedulers, as we discussed in the beginning of
Section II.

IV. APPLICATION TO THE MIN-BW PROBLEM

In this section, we show how to apply Eywa to solve
the Min-BW problem. Recall that the Min-BW problem (see
Section II) is to minimize the uplink bandwidth requirement
under some AoI constraints. Specifically, we study the prob-
lems under two AoI constraints: i) Min-BW under peak AoI
constraints, and ii) Min-BW under average AoI constraints.
The first problem was studied in [26]. We show that Eywa
can offer a stronger performance guarantee (a tighter bound)
than that in [26]. The second problem has not yet been studied
in the literature and thus our scheduler (by applying Eywa) is
the first known solution to this problem.

A. Min-BW Under Peak AoI Constraints

1) Problem Statement: The network setting is the same as
that in Section II-A. For this problem, we assume there is a
deadline (denoted as di ∈ N∗) constraint for the peak AoI of
each source i = 1, 2, · · · , N . That is,

Ai(t) ≤ di, for all t ≥ 0. (17)

Since the above constraint is a deterministic one and applies
to all t ≥ 0 and all i = 1, 2, · · · , N , it can hold only when
pi = 0 for i = 1, 2, · · · , N . Therefore, we assume pi = 0 for
all i’s in this problem. The objective is to find a scheduler π
that minimizes bandwidth W , such that (17) is satisfied.
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Table II: Comparison between Eywa and state-of-the-art for the Min-Sum problem.

Setting Algorithm Performance Guarantee When pmax = 0.12

W = 1

Eywa Ā ≤ (1 + pmax) log2 e · Ā∗ Ā ≤ 1.62 · Ā∗

Stat. Rand. [27], [29] (Ch. 3) Ā ≤ 2 · Ā∗ Ā ≤ 2 · Ā∗

Max-Weight [27], [29] (Ch. 3) Ā ≤ 2 · Ā∗ Ā ≤ 2 · Ā∗

Whittle’s Index [27], [29] (Ch. 3) Ā ≤ 4(
√
2

1−pmax
+ 1√

2
)2 · Ā∗ Ā ≤ 21.42 · Ā∗

W ≥ 2
Eywa Ā ≤ (1 + pmax) log2 e · Ā∗ Ā ≤ 1.62 · Ā∗

Stat. Rand. [28], [29] (Ch. 4) Ā ≤ 2 · Ā∗ Ā ≤ 2 · Ā∗

2) Eywa: Step 1—Transform Objective Function and Con-
straints: Since the original objective function is Jo(·) =
W , and that W =

∑N
i=1 ri, we can just replace it by

JR(r1, r2, · · · , rN ) =
∑N

i=1 ri.
In addition, for constraint (17), which is AoI-based and

specific for the Min-BW problem, we need to transform it
to a rate-based constraint. For an AUS with rate ri’s, the
transmission intervals T k

i ’s for source i are upper bounded by
⌈ 1
ri
⌉, where ⌈·⌉ is the ceiling function. Therefore, if ri ≥ 1

di
,

we will have T k
i ≤ di for all k ≥ 1. That is, ri ≥ 1

di
is

a sufficient condition for constraint (17). As such, we can
replace constraint (17) (AoI-based) by the following rate-based
constraint:

ri ≥
1

di
. (18)

3) Eywa: Step 2—Find Optimal Transmission Rates: The
second step of Eywa is to find the optimal rate vector r∗, i.e.,
to solve the following optimization problem OPT-SD (Min-
BW).

OPT-SD (Min-BW)

min
r,W

N∑
i=1

ri

s.t. γ = sort(r),
γ is step-down,
N∑
i=1

ri = W,

ri ≥
1

di
, i = 1, 2, · · · , N,

0 < ri ≤ 1, i = 1, 2, · · · , N.

W ∈ N∗.

Note that in OPT-SD (Min-BW), ri ≥ 1
di

is the additional
problem-specific rate-based constraint. Denote r∗ as the op-
timal solution to OPT-SD (Min-BW), which we will use to
construct an AUS-based scheduler in Step 3. The complete
algorithm to solve OPT-SD (Min-BW) is given in Appendix
C.

4) Eywa: Step 3—Construct an AUS-Based Scheduler: The
third step of Eywa is to construct an AUS-based scheduler

based on r∗, which is exactly the same as what we have done
in Section II-C.

5) Performance and Comparison with State-of-the-Art: In
this section, we show that Eywa offers a strong theoretical per-
formance guarantee to the Min-BW problem under peak AoI
constraints. Denote W ∗ as the optimal (unknown) objective
value for the Min-BW problem under peak AoI constraints. We
have the following theorem that guarantees the performance
of W—-the objective value obtained by Eywa.

Theorem 2 For the Min-BW problem under peak AoI con-
straints, the objective value obtained by Eywa satisfies:

W ≤ ⌈log2 e ·W ∗⌉. (19)

A proof of Theorem 2 is given in Appendix D.
For the Min-BW problem under peak AoI constraints, a

state-of-the-art solution (called Aion) was proposed in [26].
Aion can offer a performance guarantee of W ≤ 2 · W ∗ (a
proof is given in Appendix E). Since log2 e ≈ 1.44, we can
see that Eywa offers a tighter performance bound than Aion.

B. Min-BW under Average AoI Constraints

1) Problem Statement: For this problem, we assume there
is an average AoI constraint (denoted as αi ∈ R∗) for the
average AoI Āi. That is, for i = 1, 2, · · · , N ,

Āi ≤ αi. (20)

For average AoI constraints, the packet loss rate pi for each
source i can be greater than 0, i.e., pi ≥ 0. Recall in our
system model, we assume ri ≤ 1, i.e., there is at most one
packet transmitted from source i in every time slot, regardless
of how large W is. So to satisfy constraint (20), there must be
a limit on the value pi (channel condition). It can be shown
that Āi ≥ 1

1−pi
when ri ≤ 1. So for constraint (20) to hold,

we must have αi ≥ 1
1−pi

, i.e.,

pi ≤ 1− 1

αi
, (21)

for each i = 1, 2, · · · , N .
The objective of the Min-BW problem under average AoI

constraints is to find a scheduler π that minimizes bandwidth
W such that constraint (20) is satisfied.
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2) Eywa: Step 1—Transform Objective Function and Con-
straints: Again, in the first step of Eywa, we trans-
form the original objective function Jo(·) = W to
JR(r1, r2, · · · , rN ) =

∑N
i=1 ri.

For the AoI-based constraint (20), we need to transform it to
a rate-based constraint. Recall in Section III-C we have Āi ≤
qi(ri). Then, to satisfy (20), its sufficient to have qi(ri) ≤ αi

It can be shown that qi(ri) ≤ αi will hold if

ri ≥
2⌊x⌋+ 1− x

⌊x⌋2 + ⌊x⌋
, (22)

where x = (1−pi)(2αi−1)
1+pi

. So we can replace the original AoI-
based constraint (20) by the new rate-based constraint (22).

3) Eywa: Step 2—Find Optimal Transmission Rates: The
second step of Eywa is to find the optimal rate vector r∗,
i.e., to solve OPT-SD (Min-BW) by replacing problem-specific
constraint “ri ≥ 1

di
” with constraint (22). The solution to this

problem is identical to that shown in Appendix C (except
the minor change in the RHS value of the problem-specific
constraint).

4) Eywa: Step 3—Construct an AUS-based scheduler: The
third step of Eywa is to construct an AUS-based scheduler
based on r∗, which is exactly the same as what we have done
in Section II-C.

5) Performance Guarantee: In this section, we show that
Eywa offers a strong theoretical performance guarantee to the
Min-BW problem under average AoI constraints. Denote W ∗

as the optimal (unknown) objective value for the Min-BW
problem under average AoI constraints. We have the following
theorem that guarantees the performance of W—-the objective
value obtained by Eywa.

Theorem 3 For the Min-BW problem under average AoI
constraints, the objective value obtained by Eywa satisfies:

W ≤
⌈9 log2 e · (1 + pmax)

8
·W ∗

⌉
. (23)

A proof of Theorem 3 is given in Appendix F.
To date, a solution to the Min-BW problem under average

AoI constraints is not available in the literature. So the solution
that we presented here is all new.

V. APPLICATION TO DECISION PROBLEMS

In the previous two sections, we applied Eywa to solve two
optimization problems: Min-Sum and Min-BW. In addition to
solving optimization problems, the Eywa framework can also
be applied to solve decision problems related to AoI, which
we will show in this section.

The decision problem we study is to determine the existence
of feasible schedulers to satisfy AoI constraints. Specifically,
we study the problems under two AoI constraints: i) hard AoI
deadlines, and ii) soft AoI deadlines. The first problem was
studied in [24], and the second problem was studied in [25],
both for the special case of W = 1. We show that Eywa can be
applied to solve both problems for the general case of W ≥ 1.

A. A Decision Problem with Hard AoI Deadlines

1) Problem Statement: We consider the system model
in Section II-A with fixed bandwidth W ≥ 1. Denote
d = [d1, d2, · · · , dN ] as the deadline vector. Similar to
Section IV-A, we assume a hard constraint (17) for each
i = 1, 2, · · · , N . Since constraint (17) is a deterministic one,
it can hold only when pi = 0 for i = 1, 2, · · · , N .

Our goal is to solve the following decision problem: For
a given d, determine whether or not there exists a feasible
scheduler that satisfies (hard) deadline constraint (17). If there
exists a feasible scheduler, then we want to find one.

2) Eywa: Step 1—Transform Objective Function and Con-
straints: For the decision problem, there is no objective
function and we don’t need to make any transform.

For the constraints, just like in Section IV-A, we replace the
AoI-based constraint (17) by the rate-based constraint ri ≥ 1

di
.

3) Eywa: Step 2—Find Optimal Transmission Rates: The
second step of Eywa is to find the optimal rate vector r. For a
decision problem (no objective function), we need to solve the
following problem (DEC-SD), along with the problem-specific
constraint ri ≥ 1

di
.

DEC-SD: Determine whether or not r exists.
s.t. γ = sort(r),

γ is step-down,
N∑
i=1

ri = W,

ri ≥
1

di
, i = 1, 2, · · · , N,

0 < ri ≤ 1, i = 1, 2, · · · , N.

The algorithm to solve DEC-SD is given in Appendix G.
There are two possible outcomes. If we can find a feasible r
to DEC-SD, then we will use it to construct an AUS-based
scheduler in Step 3. Otherwise, we conclude we cannot find
a feasible scheduler for d.

4) Eywa: Step 3—Construct an AUS-based scheduler: The
third step of Eywa is to construct an AUS-based scheduler
based on r, which is exactly the same as what we have done
in Section II-C.

5) Eywa: Performance and Comparison with State-of-the-
Art: The following theorem gives a performance guarantee of
Eywa:

Theorem 4 For any d with
∑N

i=1
1
di

≤ W
log2 e , Eywa can

always find a feasible scheduler.

Theorem 4 can be easily proved based on Lemma 1 in
Appendix B and the design of Algorithm 6 in Appendix G.

For the decision problem with hard AoI deadlines, a state-
of-the-art solution (called FPM) was proposed in [24]. But
FPM was only designed for the special case of W = 1 and
it is not clear how to extend it to the general case of w ≥ 1.
The main result of FPM is that for any d with

∑N
i=1

1
di

≤
1

log2 e , FPM can always find a feasible scheduler [24], which
is consistent to what Eywa can also deliver (when W = 1).
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B. A Decision Problem with Soft AoI Deadlines

1) Problem Statement: Now we assume the AoI deadline
di’s are soft, i.e., occasional violations can be tolerated. Denote
ϵ = [ϵ1, ϵ2, · · · , ϵN ] as the vector for violation rates, where
ϵi ∈ [0, 1) for each i = 1, 2, · · · , N . The soft AoI deadline
constraint for each source node i = 1, 2, · · · , N is given by

lim
T→∞

1

T

T∑
t=1

[Ai(t) > di] ≤ ϵi, (24)

where “[·]” is Iverson bracket, returning 1 if the inside state-
ment is true and 0 otherwise. Denote p = [p1, p2, · · · , pN ] as
the vector for packet loss rates. For soft AoI deadlines, pi for
each source i can be greater than 0, i.e., pi ≥ 0.

Similar to that in Section V-A, our goal is to solve the
following decision problem: For a given (d, ϵ,p), determine
whether or not there exists a feasible scheduler that satisfies
(soft) deadline constraint (24). If there exists a feasible sched-
uler, then we want to find one.

2) Eywa: Step 1—Transform Objective Function and Con-
straints: Again, for the decision problem, there is no objective
function and we don’t need to make any transform.

For the AoI-based constraint (24), we need to transform it to
a rate-based constraint. In our previous work [25], we showed
that (24) is satisfied if

ri ≥ rtar
i , (25)

where rtar
i is given by

rtar
i =


1⌊

(1−pi)di

(1−pi)⌊logpi ϵi⌋+1−ϵip
−⌊logpi ϵi⌋
i

⌋ , if ϵi < pi,

1−ϵi
(1−pi)di

, if ϵi ≥ pi.

So we can replace the original AoI-based constraint (24) by
the new rate-based constraint (25).

3) Eywa: Step 2—Find Optimal Transmission Rates: The
second step of Eywa is to find the optimal rate vector r.
Similar to that in Section V-A, we need to solve DEC-
SD by replacing problem-specific constraint “ri ≥ 1

di
” with

constraint (25). The solution to this problem is identical to
that shown in Appendix G. Again, if we can find a feasible
r to DEC-SD, then we will use it to construct an AUS-based
scheduler in Step 3. Otherwise, we conclude we cannot find
a feasible scheduler for d.

4) Eywa: Step 3—Construct an AUS-based scheduler: The
third step of Eywa is to construct an AUS-based scheduler
based on r, which is exactly the same as what we have done
in Section II-C.

5) Eywa: Performance and Comparison with State-of-the-
Art: The following theorem gives a performance guarantee of
Eywa:

Theorem 5 For any (d, ϵ,p) with
∑N

i=1 r
tar
i ≤ W

log2 e , Eywa
can always find a feasible scheduler.

Theorem 5 can be easily proved based on Lemma 1 in
Appendix B.

For the decision problem with soft AoI deadlines, a state-
of-the-art solution (called UTS) was proposed in [25]. Again,
UTS was only designed for the special case of W = 1. The
main result of UTS is that for any (d, ϵ,p) with

∑N
i=1 r

tar
i ≤

1
log2 e , UTS can always find a feasible scheduler [25], which
is consistent to what Eywa can also deliver (when W = 1).

VI. SUMMARY

This paper presented Eywa—a general design framework
that can be applied to construct high-performance schedulers
for AoI-related optimization and decision problems. The core
of Eywa hinges upon the notions of AUS schedulers and step-
down rate vectors. The framework of Eywa consists of three
steps: (i) transform the (AoI-based) objective function and
constraints to rate-based ones, (ii) find the optimal step-down
rate vector by solving an optimization problem (OPT-SD), and
(iii) construct an AUS-based scheduler using the optimal step-
down rate vector. To validate the efficacy of the proposed
Eywa framework, we applied it to solve a number of AoI opti-
mization and decision problems, such as Min-Sum, Min-BW,
and the decision problems with AoI constraints. The results
are summarized in Fig. 3. We found that for each problem,
Eywa can either offer a stronger performance guarantee than
the state-of-the-art algorithms, or provide new/general results
that are not available in the literature.
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APPENDIX

A. An Algorithm to Solve OPT-β

We first transform the decision variable r to its sorted
version γ, to make the problem easier. We define γLB =
sort(rLB). It can be shown that in the optimal solution r∗ to
OPT-β, the order of elements should be the same as the order
of elements. That is, for any i ̸= j, if rLB

i > rLB
j , then we

have r∗i > r∗j . Therefore, it’s sufficient to solve the following
OPT-β (γ) with variable γ (rather than r):

OPT-β (γ): max
γ,β

β

s.t. γ is step-down,

β · γLB
i ≤ γi ≤ 1, i = 1, 2, · · · , N,

N∑
i=1

γi = W.

After obtaining γ∗ to OPT-β (γ), we can re-sort it and obtain
r∗, the optimal solution to OPT-β.

We notice that there are two variables γ and β in OPT-β
(γ), which are hard for us to handle at the same time. So we
propose to fix β first, and transform OPT-β (γ) to a decision
problem DEC-γ, for whether or not there exists a feasible γ
to OPT-β (γ).

DEC-γ: Determine whether or not γ exists.
s.t. γ is step-down,

β · γLB
i ≤ γi ≤ 1, i = 1, 2, · · · , N,

N∑
i=1

γi = W.

If we have an algorithm to solve DEC-γ under fixed β, we
could use bisection to find the optimal β∗ to OPT-β (γ).

To solve DEC-γ, we further transform it to an easier
optimization problem OPT-γ̂. we define li = β · γLB

i for each
i = 1, 2, · · · , N . Clearly, we have l1 ≥ l2 ≥ · · · ≥ lN . Then
for fixed β, we consider the following optimization problem
with objective γ̂.

OPT-γ̂: min
γ̂

N∑
i=1

γ̂i

s.t. γ̂ is step-down,
li ≤ γ̂i ≤ 1, i = 1, 2, · · · , N.

Denote γ̂∗ as the optimal objective to OPT-γ̂. If
∑N

i=1 γ̂
∗
i ≤

W , then γ = γ̂∗ ·W/(
∑N

i=1 γ̂
∗
i ) is a feasible solution to DEC-

γ. On the other hand, if
∑N

i=1 γ̂
∗
i ≤ W , then there does not

exist any feasible solution to DEC-γ for the fixed β.
OPT-γ̂ can be solved by a DP-based solution (see Algorithm

2 in our previous work [25]). We only need the following
minor change. In the step-down definition (Definition 2) in this
paper, we allow the leading elements in γ to be 1. As a result,

Algorithm 4 A Bisection-Based Solution to OPT-β

Input: rLB, W , ϵ.
Output: β∗ and r∗.

1: Sort rLB and get γLB = sort(rLB). Set βLB = 0, βUB = 1.
2: while βUB − βLB > ϵ do
3: Set β = (βUB + βLB)/2.
4: Set li = β ·γLB

i for each i = 1, 2, · · · , N . Solve OPT-γ̂
(by Algorithm 2 in [25]) and obtain an optimal solution
γ̂∗.

5: if
∑N

i=1 γ̂
∗
i ≤ W then

6: Set γ∗ = γ̂∗ ·W/(
∑N

i=1 γ̂
∗
i ). Set β∗ = β. Set βLB =

β.
7: else
8: Set βUB = β.
9: end if

10: end while
11: Re-sort γ∗ and get r∗.

we need to set Ri = {1} ∪ {nr̂k | rlb
i ≤ nr̂k ≤ 1, n ∈ N∗} in

Step 5 of Algorithm 2 in [25].
A pseudocode for a bisection-based solution to solve OPT-

β is given in Algorithm 4. Note that ϵ is an input parameter
which stands for error tolerance of the objective β, with ϵ <<
1.

B. A Proof of Theorem 1

Before proving Theorem 1, we first introduce the following
lemma w.r.t. γ̂∗,the optimal objective to OPT-γ̂.

Lemma 1
∑N

i=1 γ̂
∗
i ≤ log2 e ·

∑N
i=1 li.

Proof We proof Lemma 1 by contradiction. Suppose∑N
i=1 γ̂

∗
i > log2 e ·

∑N
i=1 li. Then for any γ̂ that is feasible to

OPT-γ̂, we have
∑N

i=1 γ̂i > log2 e ·
∑N

i=1 li.
For any x > 0, we define two vectors γ̂x =

[γ̂x
1 , γ̂

x
2 , · · · , γ̂x

N ] and γx = [γx
1 , γ

x
2 , · · · , γx

N ] as:

γ̂x
i = min{1, x · 2⌈log2(

li
x )⌉}, i = 1, 2, · · · , N. (26)

γx
i = x · 2⌈log2(

li
x )⌉, i = 1, 2, · · · , N. (27)

It can be verified that γ̂x is feasible to OPT-γ̂. Therefore, for
any x > 0 we have

N∑
i=1

γ̂x
i > log2 e ·

N∑
i=1

li. (28)

For each i, we have γx
i ≥ γ̂x

i . So for any x > 0, we have

N∑
i=1

γx
i > log2 e ·

N∑
i=1

li. (29)

Define g(x) = 1
x . We have∫ 1

0.5

g(x)dx =
1

log2 e
. (30)
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Multiplying the two sides of (29) and (30) respectively, we
have ∫ 1

0.5

g(x)dx ·
N∑
i=1

γx
i >

N∑
i=1

li. (31)

Substituting g(x) = 1
x and (27) into (31), we have

N∑
i=1

∫ 1

0.5

2⌈log2(
li
x )⌉dx >

N∑
i=1

li. (32)

It can be shown that the LHS of (32) equals to
∑N

i=1 li. So
we have

N∑
i=1

li >

N∑
i=1

li. (33)

Clearly, (33) can not hold (i.e., a contradiction). This com-
pletes our proof of Lemma 1.

With Lemma 1 in hands, we can further prove Lemma 2
w.r.t. β∗, the optimal solution to OPT-β. Note that Lemma 2
holds when ϵ is sufficiently small (otherwise, Algorithm 4 will
terminate too early).

Lemma 2 When ϵ is sufficiently small, we can always have
β∗ ≥ 1

log2 e .

Proof We prove Lemma 2 by contradiction. Suppose β∗ <
1

log2 e . Then for γ̂∗, the optimal objective to OPT-γ̂, we have

N∑
i=1

γ̂∗
i ≥ W, (34)

otherwise β∗ is not the optimal objective to OPT-β. On the
other hands, by Lemma 1, we have

N∑
i=1

γ̂∗
i ≤ log2 e ·

N∑
i=1

β∗ · γLB
i . (35)

Since γ is feasible to OPT-LB, we have
∑N

i=1 γ
LB
i ≤ W .

Considering (35) and β∗ < 1
log2 e , we have

N∑
i=1

γ̂∗
i < W, (36)

which contradicts to (34). This completes our proof of Lemma
2.

With Lemma 2 in hands, now we can offer a proof of
Theorem 1. Note that in Algorithm 4, we must set ϵ small
enough to make sure β∗ ≥ 1

log2 e .

Proof Considering ĀLB ≤ Ā∗, to prove (16), it’s sufficient to
prove

N∑
i=1

wiĀi ≤ (1 + pmax) log2 e · ĀLB. (37)

Define f(x) = 2⌊ 1
x⌋ + 1 − x(⌊ 1

x⌋
2 + ⌊ 1

x⌋). Then we have
qi(ri) =

1+pi

1−pi
f(ri) +

1
2 . Following the discussions in Section

Algorithm 5 A Solution to OPT-SD (Min-BW)

Input: d.
Output: W and r∗.

1: Sort d in non-decreasing order.
2: Set li = 1

di
for each i = 1, 2, · · · , N . Solve OPT-γ̂ (by

Algorithm 2 in [25]) and obtain an optimal solution γ̂∗.
3: Set W = ⌈

∑N
i=1 γ̂

∗
i ⌉. Set γ∗ = γ̂∗ ·W/(

∑N
i=1 γ̂

∗
i ).

4: Re-sort γ∗ and get r∗.

III-C, it can be shown that qi(ri) ≥ Āi for each i. Therefore,
for the AUS with r∗, to prove (37), it’s sufficient to prove

N∑
i=1

wi(1 + pi)

2(1− pi)
f(r∗i )+

N∑
i=1

wi

2
≤ (1+pmax) log2 e·ĀLB. (38)

Considering (13), to prove (38), it’s sufficient to prove

wi(1 + pi)

2(1− pi)
f(r∗i )+

wi

2
≤ (1+pmax) log2 e·(

wi

2(1− pi)rLB
i

+
wi

2
)

for each i = 1, 2, · · · , N . Since pmax ≥ pi, it’s sufficient to
prove

1 + pi
1− pi

f(r∗i ) + 1 ≤ (1 + pi) log2 e · (
1

(1− pi)rLB
i

+ 1).

By Lemma 2, we have r∗i = β∗ · rLB
i ≥ 1

log2 e · rLB
i . So it’s

sufficient to prove
1 + pi
1− pi

f(r∗i ) + 1 ≤ 1 + pi
(1− pi)r∗i

+ (1 + pi) log2 e,

which is equivalent to

f(r∗i )−
1

r∗i
≤ (1− pi) log2 e−

1− pi
1 + pi

. (39)

Recall f(x) = 2⌊ 1
x⌋+1−x(⌊ 1

x⌋
2+ ⌊ 1

x⌋). It can be proved
that f(x) − 1

x ≤ 3 − 2
√
2 for all 0 < x < 1 (the equality

holds when x =
√
2
2 ). So the LHS of (39) is no greater than

3 − 2
√
2 = 0.172. On the other hand, the RHS of (39) is no

less than 0.193 ∗ log2 e − 0.193
1.807 = 0.172 when pi ≤ 0.807.

Therefore, (39) always holds. This completes our proof.

C. An Algorithm to Solve OPT-SD (Min-BW)

Similar what we we did in A, to solve OPT-SD (Min-BW),
we first transform r to its sorted version γ. Here we sort
d in non-decreasing order. Then we solve problem OPT-γ̂
by letting li = 1

di
for each i = 1, 2, · · · , N and let W ∗ =

⌈
∑N

i=1 γ̂
∗
i ⌉.

A pseudocode for a solution to solve OPT-SD (Min-BW) is
given in Algorithm 5.

D. A Proof of Theorem 2

First we develop a lower bound for the optimal objective
W ∗. For each source node i, to satisfy (17) for all t, there
must be at least one transmission within any consecutive di
time slots. Therefore,to satisfy (17), the transmission rate ri
must satisfy:

ri ≥
1

di
. (40)
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Considering (40) and (4), we have

W ∗ ≥
N∑
i=1

1

di
. (41)

Then we derive an upper bound for the bandwidth W found
by Eywa. By Lemma 1, we have

N∑
i=1

γ̂∗
i ≤ log2 e ·

N∑
i=1

1

di
. (42)

From Step 3 in Algorithm 5, we have

W ≤
⌈
log2 e ·

N∑
i=1

1

di

⌉
. (43)

Combining (41) and (43), we can complete the proof of
Theorem 2.

E. Performance Guarantee for Aion in [26]

In [26, Theorem 2], Liu et al. proved that

WAion

W ∗ ≤

⌈∑N
i=1

1
l∗i

⌉
⌈∑N

i=1
1
di

⌉ , (44)

where WAion is the bandwidth achieved by their proposed
algorithm Aion and the vector l∗ = [l∗1 l∗2 · · · l∗N ] is the
optimal solution of the following problem:

min
l1,l2,··· ,lN∈R

N∑
i=1

1

li
(45a)

s.t. 1 ≤ li ≤ di, for i ∈ {1, 2, · · · , N},(45b)
li

li−1
∈ Z+, for i ∈ {2, 3, · · · , N}, (45c)

li ∈ R+, for i ∈ {1, 2, · · · , N}. (45d)

We note that it is easy to prove

WAion

W ∗ ≤

⌈∑N
i=1

1
l∗i

⌉
⌈∑N

i=1
1
di

⌉ ≤ 2 (46)

as follows: Consider the vector l′ = [l′1 l′2 · · · l′N ] where
l′i = 2⌊log2 di⌋ for each i = 1, 2, · · · , N . Clearly, l′ is a feasible
solution of (45). As l∗ is the optimal solution of (45), it holds
that⌈∑N

i=1
1
l∗i

⌉
⌈∑N

i=1
1
di

⌉ ≤

⌈∑N
i=1

1
l′i

⌉
⌈∑N

i=1
1
di

⌉ =

⌈∑N
i=1

1
2⌊log2 di⌋

⌉
⌈∑N

i=1
1
di

⌉
≤

⌈∑N
i=1

1
2(log2 di−1)

⌉
⌈∑N

i=1
1
di

⌉ =

⌈
2 ·

∑N
i=1

1
di

⌉
⌈∑N

i=1
1
di

⌉ ≤ 2,

which completes the proof.

Algorithm 6 A Solution to DEC-SD

Input: d, W .
Output: Whether or not a feasible r exists. If yes, find it.

1: Sort d in non-decreasing order.
2: Set li = 1

di
for each i = 1, 2, · · · , N . Solve OPT-γ̂ (by

Algorithm 2 in [25]) and obtain an optimal solution γ̂∗.
3: if

∑N
i=1 γ̂

∗
i ≤ W then

4: Determine that there exist a feasible r. Construct a step-
down γ with

∑N
i=1 γi = W by letting some leading

elements in γ̂∗ be 1. Re-sort γ and get the feasible r
to DEC-SD.

5: else
6: Determine that there does not exist a feasible r.
7: end if

F. A Proof of Theorem 3

First we develop a lower bound for the optimal objective
W ∗. Recall that for any scheduler, we have (12). So to satisfy
(20), we must have

ri ≥
1

(1− pi)(2αi − 1)
, i = 1, 2, · · · , N. (47)

Considering (47) and (4), we have

W ∗ ≥
N∑
i=1

1

(1− pi)(2αi − 1)
. (48)

Then we derive an upper bound for the bandwidth W found
by Eywa. Define function g(·) as:

h(x) =
2⌊x⌋+ 1− x

⌊x⌋2 + ⌊x⌋
. (49)

It can be shown that for all x > 1, we have

h(x) ≤ 9

8x
, (50)

where the equality holds when x = 3
2 . In OPT-γ̂, we have

N∑
i=1

li =
N∑
i=1

h
( (1− pi)(2αi − 1)

1 + pi

)
, (51)

so we have
N∑
i=1

li ≤
9

8
·

N∑
i=1

(1− pi)(2αi − 1)

1 + pi
. (52)

By Lemma 1, we have
N∑
i=1

γ̂∗
i ≤ log2 e ·

9

8
·

N∑
i=1

(1− pi)(2αi − 1)

1 + pi
. (53)

From Step 3 in Algorithm 5, we have

W ≤
⌈
log2 e ·

9

8
·

N∑
i=1

(1− pi)(2αi − 1)

1 + pi

⌉
. (54)

Combining (48) and (54), we can complete the proof of
Theorem 3.
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G. An Algorithm to Solve DEC-SD

To solve DEC-SD, we first transform r to its sorted version
γ. Here we sort d in non-decreasing order. Then we solve
problem OPT-γ̂ by letting li =

1
di

for each i = 1, 2, · · · , N
and obtain an optimal solution γ̂∗. IF

∑N
i=1 γ̂

∗
i ≤ W , then

there exists a feasible r to DEC-SD. Otherwise, there does
not.

A pseudocode for a solution to solve DEC-SD is given in
Algorithm 6.
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