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Abstract— Age of Information (AoI) is an application layer
performance metric that quantifies the freshness of information.
This paper investigates scheduling problems at network edge
when there is an AoI requirement for each source node, which
we call Maximum AoI Threshold (MAT). Specifically, we want to
determine whether or not a vector of MATs corresponding to the
source nodes is schedulable, and if so, find a feasible scheduler
for it. For a small network, we present an optimal procedure
called Cyclic Scheduler Detection (CSD) that can determine the
schedulability with absolute certainty. For a large network where
CSD is not applicable, we present a novel low-complexity proce-
dure, called Fictitious Polynomial Mapping (FPM), and prove that
FPM can find a feasible scheduler for any MAT vector when the
load is under ln 2. We use extensive numerical results to validate
our theoretical results and show that the performance of FPM is
significantly better than a state-of-the-art scheduling algorithm.

Index Terms— Age of information (AoI), scheduling, deadline.

I. INTRODUCTION

AGE of Information (AoI) is a new metric used to measure
the freshness of information [2], [3]. It has since captured

the attention of the research community and is now an area of
active research (see a survey in [4] and an online bibliography
in [5]). By definition in [2], [3], AoI measures the elapsed
time period between the present time and the generation
time of the information. AoI is fundamentally different from
traditional metrics such as delay or latency that are used by the
networking community as the latter only considers the transit
time for a packet through a network component or the network.
In other words, delay or latency typically refers to the time
required to move the information from one point to another
in the network. In contrast, AoI includes delay or latency as
its components and advances with time if there are no new
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updates. From layered perspective, AoI is an application layer
metric while delay or latency is at a lower layer (e.g., transport
or link layer).

There has been active research on designing scheduling
algorithms to minimize AoI (see, e.g., [5]). Although a clever
design of a scheduler to minimize AoI is important, it does
not address some important application areas where there
is a hard performance requirement on AoI metric. Imagine
some AoI-critical applications such as autonomous vehicles
and unmanned aerial vehicles, where the applications require
certain freshness guarantee from some sources. Although
existing schedulers designed for AoI minimization has some
relevance to AoI thresholds, they are fundamentally different
problems. Simply put, existing schedulers designed for AoI
minimization cannot offer any guarantee on AoI thresholds.
A close scanning of the literature [5] shows that there is a
serious lack of research in this area.

In this paper, we address this issue by studying AoI
scheduling under a Maximum AoI Threshold (MAT) for each
source node.1 Specifically, this paper addresses the following
problems:

(i) For a vector of MAT requirement for the source nodes,
does there exist a feasible scheduler that can satisfy this
requirement vector?

(ii) If a feasible scheduler exists, then find such a scheduler.
As we shall see, these two problems are intertwined with

each other and a simultaneous investigation of both is needed.
Further, they are very different from the existing AoI mini-
mization problems.

It is also instructive to see that these two problems are
different from traditional task scheduling problems with dead-
lines [42]–[45]. In particular, Earliest Deadline First (EDF),
the most well-known scheduler, was shown to be very efficient
in the task scheduling problem [42], [43]. But we shall see that
it performs poorly for our AoI problem in this paper, due to
the fundamental difference between the definitions of AoI and
delay.

We summarize the main contributions of this paper as
following:

• First, we prove that if there exists a feasible scheduler
w.r.t. an MAT vector d, then there must exist at least
one feasible cyclic scheduler. This result allows us to

1We use MAT to make a distinction from traditional notion of deadline for
transport or link layer.
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narrow down the search space and to focus only on cyclic
schedulers. Based on this result, we present an optimal
solution called Cyclic Scheduler Detection (CSD) that can
determine whether there exists a feasible scheduler with
absolute certainty. The only limiting issue with CSD is its
high complexity. So it is only useful for a small network.

• For a large network where CSD is not applicable, we pur-
sue a fast (polynomial time complexity) procedure to
solve our problem. We first give a definition for the
so-called “MAT load” of a network, denoted as l(d),
and show that for any d, if l(d) > 1, then d is not
schedulable. Then we identify a special type of MAT
vector, called polynomial MAT vector, and present a
low-complexity procedure called Polynomial Scheduler
Construction (PSC) that can find a feasible scheduler for
any polynomial MAT vector d with l(d) ≤ 1.

• For a general (non-polynomial) MAT vector d, we pro-
pose to map it to another polynomial MAT vector with
load no greater than 1 and subsequently construct a fea-
sible scheduler for d based on this mapping. To do this,
we generalize the definition of polynomial MAT vector
to “fictitious polynomial” vector d̃, in which the elements
are allowed to be fractions instead of just integers. Based
on this generalization, we present a low-complexity pro-
cedure called Fictitious Scheduler Construction (FSC),
which can always find a feasible scheduler for d if it can
be mapped to a d̃ with l(d̃) ≤ 1.

• With FSC in hand, the only remaining issue is to find a
mapping between d and a fictitious polynomial d̃ with
l(d̃) ≤ 1. To address this, we design a low-complexity
procedure called Fictitious Polynomial Mapping (FPM),
which is able to find such a mapping if it exists. We prove
that FPM is able to find a feasible scheduler for any d
with l(d) ≤ ln 2 (≈ 69.3%). We also show that the cycle
length of a feasible scheduler found by FPM is no greater
than the largest element in MAT vector d.

The rest of the paper is organized as follows. In Section II,
we review related work on AoI scheduling. In Section III,
we describe the data collection network model in this paper
and state the scheduling problem that we investigate in this
paper. In Section IV, we present an exhaustive procedure that
can determine the schedulability of any MAT vector. Due to
its high complexity, it is only useful when the number of
nodes is small. In Section V, we present a procedure that
can find a feasible scheduler for a special group of MAT
vectors when its load is no greater than 1. In Section VI,
we generalize the procedure in Section V and present a
new procedure for general MAT vectors. In Section VII we
prove that the procedure in Section VI can find a feasible
scheduler for any MAT vector when its load is no greater
than ln 2. In Section VIII, we perform extensive simulations to
validate the theoretical results and examine the behavior of our
proposed solution procedures. Section IX concludes this paper.

II. RELATED WORK

There has been a flourish of research on AoI in recent
years [5]. A main line of research is to design sched-
ulers that minimize AoI (e.g., [6]–[28]). Another line of

Fig. 1. System model: N source nodes collect information and forward it
to a BS.

research focuses on modeling, analysis, and optimization of
AoI (e.g., [29]–[33]). There are some other branches on AoI
research, such as game theory for AoI (e.g., [34]–[36]),
channel coding for AoI (e.g. [37]–[39]), and AoI applications
(e.g. [40], [41]), to name a few.

Since this paper is on scheduler design, we will limit our
literature review in this area. In [6]–[9], the authors designed
schedulers to minimize AoI under the same transmission
model in Fig. 1 where information sources share a common
channel. Specifically, in [6], Hsu et al. assumed a Bernoulli
packet arrival model for the sources. In [7], Kadota et al.
considered an unreliable channel where there is a fixed packet
loss probability for each transmission. In [8], Zhong et al.
studied a new metric called age of synchronization (AoS)
along with AoI. In [9] Jhunjhunwala and Moharir studied how
to minimize a long-term cost function of AoI.

Extensions beyond the model in [6]–[9] have also been
explored in recent works. For example, in [10]–[14], the
authors extended the assumption that only one source can
transmit at one time instance to a multi-channel model where
multiple sources can send packets to the BS. In [15], the
authors extended the time-slotted network model to a more
general case where the transmission from each source can
begin at any time instance, and carrier sensing is utilized
to reduce collisions. In [16] Zhou and Saad generalized the
sample sizes, i.e., considered varying sample sizes among the
source nodes. In [17]–[20], the authors considered OFDM
channels where the channel resource is organized as a
2-dimensional resource gird. In [21]–[24], the authors consid-
ered a multi-link ad hoc network where multiple information
sources send information updates to multiple destinations.
In [25], Yang et al. studied many device-to-device commu-
nication pairs interfering with each other depending on their
geography locations on a 2-dimensional plane. In [26]–[28],
the author considered a multi-hop network environment where
the sources update information to their destinations through
relay nodes.

Although these efforts have made important contributions
to the design of schedulers to minimize AoI, there is a lack of
research on scheduler design under maximum AoI thresholds,
which motivates us to investigate in this paper.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a network (see Fig. 1) consisting of N source
nodes and one base station (BS). Each source node collects
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data (information sample) and forwards it to the BS through
a shared wireless channel. Assume time is slotted and each
source node takes a new sample at the beginning of each
time slot. Due to limited channel capacity, not every sample
collected at a source node can be sent to the BS. Upon a
transmission opportunity, only the freshest (latest) sample at
a source will be chosen for transmission. Similar to [6]–[8],
we assume the transmission of a sample takes one time slot.
Therefore, at most one sample from a source node can be
transmitted in a time slot.

Depending on the objective, a scheduler is needed to decide
which sample will be chosen for transmission in each time slot.
Denote π(t) ∈ {0, 1, 2, · · · , N} as the scheduling decision for
time slot t (t = 0, 1, 2, · · · ). When π(t) = 0, it denotes that
none of the source nodes is chosen for transmission at t; when
π(t) = i and 1 ≤ i ≤ N , it denotes that the scheduler chooses
source node i for transmission at t;

At the BS, it maintains the most recent (freshest) sample
from each source that it has received. Once a new sample
from a source node is received, the BS updates the current
sample for this source node with this new one. For the sample
from source node i that is currently maintained by the BS,
denote Ui(t) as its generation time at its source node. Then
the AoI for source node i (as perceived by the BS), denoted
as Ai(t), can be written as:

Ai(t) = t− Ui(t). (1)

Recall each source node generates a sample at each t =
0, 1, 2, · · · . If the sample from source node i is chosen for
transmission at t after it is generated (i.e. π(t) = i), then at
time (t + 1), it will be received by the BS, i.e., Ui(t + 1) = t
and

Ai(t + 1) = t + 1− Ui(t + 1) = 1.

On the other hand, if the sample from source node i is not
chosen for transmission at t (i.e., π(t) �= i), then at time (t+1),
its AoI at the BS will increase by one. Combining both cases,
we have:

Ai(t + 1) =

{
1, if π(t) = i,

Ai(t) + 1, otherwise.
(2)

Initially, at time t = 0, we assume the system has just been
turned on and there is no sample yet at the BS. So Ai(0)
for each source i is “undefined”. As time goes on, more and
more samples from different source nodes will be received at
the BS. Intuitively, an “undefined” AoI for a source node is
“worse” than a very large AoI at the BS, as an undefined AoI
does not offer any useful information, let alone to consider
its “freshness”. Therefore, whenever Ai(t) remains undefined
for source node i at the BS, our scheduler should consider a
transmission of a sample from this source ASAP.

Tables I and II list key notation and acronyms in this paper.
When there is no ambiguity, we use the term “at TTI t” to
refer to at the beginning of TTI t and use the term “in TTI
t” to refer to the underlying action is completed at the end of
TTI t.

In this paper, we assume there is a Maximum AoI threshold
(MAT), denoted by di, that is associated with each source

TABLE I

NOTATION

TABLE II

ACRONYMS

node at the BS. di serves as an upper bound for Ai(t), and
our goal is to design a scheduler such that Ai(t) ≤ di for all
i = 1, 2, · · · , N .2 Note that at t = 0, Ai(t)’s are undefined
for all i. So it only makes sense that we design a scheduler
so that the above objective is achieved after some warm-up
period.

Formally, we say a scheduler π is feasible if there exists a
warm-up period t0 such that for t > t0, we have Ai(t) ≤ di

for i = 1, 2, · · · , N . Note that for practical purpose, t0 should
not be too large. We will address this issue in Section IV-A.

Denote d = [d1 d2 · · · dN ] as the vector of MATs for
all source nodes. We say d is schedulable if there exists at
least one feasible scheduler π. We want to study the following
two problems in this paper: (i) For a given d, is it schedula-
ble? (ii) If it is schedulable, then find a feasible scheduler
for it.

The above problem is very different from the existing
research on minimizing AoI [6]–[8], [10]–[28]. Specifically,
most of these works attempted to minimize the weighted-
sum long-term average AoI, Ā =

∑N
i=1 wiĀi, where Āi

is a long-term average AoI for source node i. Although Ā
is minimized in the final solution, there is no concern of
whether AoI for a source will exceed a threshold during the
process. In other words, existing research on AoI minimization
is conducted with no consideration of hard AoI requirement.
But when such a requirement on AoI is present, it becomes a
very different problem.

2In this paper we assume a hard threshold that must not be violated. The case
where the threshold is soft, e.g., allowing a percentage of threshold violation,
will be explored in our future work.
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IV. SCHEDULABILITY CHECK WITH

A CYCLIC SCHEDULER

In this section, we present an error-free procedure, named
Cyclic Scheduler Detection (CSD), to determine the schedu-
lability of d. By “error-free”, we mean that by executing
CSD, we will be able to determine (with absolute certainty
or no error) whether or not d is schedulable. The only
issue with CSD is its high complexity (exponential w.r.t N ).3

This limitation serves as the motivation of our work in
Sections V and VI.

A. Existence of a Feasible Cyclic Scheduler

A scheduler may exhibit either cyclic or non-cyclic behav-
ior. We say a scheduler is cyclic if its scheduling decision
exhibits a periodic pattern over a finite number of time slots,
i.e., πc(t) = πc(t + c) for t ≥ 0 with some constant c. Here
c is the cycle length of this cyclic scheduler. The following
lemma helps us narrow down the search space for a feasible
scheduler (w.r.t. d) to only cyclic scheduler.

Lemma 1: If an MAT vector d is schedulable, then there
exists at least one cyclic scheduler that is feasible w.r.t. d.

To prove Lemma 1, we define the state of AoI at the
BS at time t (denoted as s(t)) as a vector comprising of
current values of AoI for all source nodes, i.e., s(t) =
[A1(t) A2(t) · · · AN (t)]. Clearly, for two different time t1 and
t2, if the current states and the scheduling decisions are both
identical, i.e., s(t1) = s(t2) and π(t1) = π(t2), then we have
s(t1 + 1) = s(t2 + 1).

We now consider possible state space under a feasible
scheduler. After some warm-up time t0, for each source node i,
we have 1 ≤ Ai(t) ≤ di (by definition of a feasible scheduler).
We define the state space of feasible schedulers as a set S as

S = {s(t) : | 1 ≤ Ai(t) ≤ di, i = 1, 2, · · · , N}. (3)

Clearly, there is a total of d1 ·d2 · · · dN unique states in S. It’s
easy to see that under a feasible cyclic scheduler, the evolution
of state also exhibits a cyclic behavior, with a cycle length
equal to the length of the scheduling cycle, i.e.,

s(t) = s(t + c), for t > dmax. (4)

Based on the above analysis, we are now ready to prove
Lemma 1.

Proof Lemma 1: Our proof is based on the construction
of a feasible cyclic scheduler. Since d is schedulable, there
exists a feasible scheduler π(t) with a warm-up time t0. Since
there are a total of d1 · d2 · · · dN states that π(t) can visit
after t0, there must exist a state that π(t) visits at least twice
over the time interval [t0 +1, t0 + d1 ·d2 · · ·dN +1]. Suppose
the two time instances that s(t) visit this state are t1 and t2,
with t1 < t2. Then we have s(t1) = s(t2). We can take the
scheduling decisions within the time interval [t1, t2−1] as the
decisions for one cycle, and repeat it to construct a feasible
cyclic scheduler.

3Incidentally, when N is small, the MAT scheduling problem in this section
can also be solved by the procedure proposed by Jhunjhunwala and Moharir
in [9].

By Lemma 1, to determine the schedulability of d, we only
need to check the existence of a feasible cyclic scheduler w.r.t.
d. If there exists one (through any construction), then d is
schedulable; otherwise (i.e., there does not exist any feasible
cyclic scheduler), then d is unschedulable.

Before we determine the existence of a feasible cyclic
scheduler, we make a comment on the warm-up period t0 for
a feasible cyclic scheduler (if it exists). The following lemma
shows one possible value for the warm-up period.

Lemma 2: For any feasible cyclic scheduler, t0 = dmax can
be used as the warm-up period.

Proof: To prove this lemma, it is sufficient to prove that
for any feasible cyclic scheduler, when t > dmax, Ai(t) ≤ di

for i = 1, 2, · · · , N .
Our proof is based on contradiction. Suppose under a feasi-

ble cyclic scheduler with a cycle length c, at time t1 > dmax,
we have Ai(t1) > di. Then from (4), we have Ai(t1 + nc) =
Ai(t1) > di for all n ∈ N, which contradicts to the feasibility
assumption of the cyclic scheduler (i.e., there exists a to
such that for any t > t0, Ai(t) ≤ di). This completes the
proof.

Based on Lemmas 1 and 2, we will focus on the design
of a feasible cyclic scheduler w.r.t. d. From this point on,
we use “feasible scheduler” as an abbreviation of “feasible
cyclic scheduler” when there is no confusion.

B. Detection of Feasible Cyclic Scheduler

In the last section, we showed that we can determine d’s
schedulability by determining the existence of a feasible cyclic
scheduler w.r.t. d. In this section, we show that we can reduce
the latter problem to checking the existence of a cycle in a
directed graph [46], [47].

To see how this is possible, we construct a state transition
graph (STG) that consists of d1·d2 · · · dN nodes (the maximum
number of states for s(t)). Each node in this STG represents
a state in S. For each node in this STG, there are N possible
scheduling decisions. If a scheduling decision leads to a
feasible state (i.e., another node in this STG), we draw a
directed edge from the current node to the next node in the
STG. Clearly, there is a one-to-one mapping between a feasible
cyclic scheduler w.r.t. d and a cycle in STG. We have the
following lemma.

Lemma 3: The existence of a feasible cyclic scheduler w.r.t.
d is equivalent to the existence of a cycle in STG.

The proof of Lemma 3 follows directly from the above
discussion and is thus omitted here.

The following corollary follows from Lemma 3, which
shows us a way to construct a feasible cyclic scheduler (if
d is schedulable).

Corollary 3.1: A cycle in STG constitutes a feasible cyclic
scheduler w.r.t. d, with each edge in the cycle corresponding
to the scheduling decision for that state.

Now we outline the CSD procedure in Fig. 2. Based on
Lemma 3, CSD is an error-free procedure.

There are some well-known solutions to check the existence
of a cycle (and find one if there exists) in a directed graph, such
as topological sorting [46] and Depth-First-Search (DFS) [47].
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Fig. 2. CSD procedure.

The time complexity of both algorithms is O(|V | + |E|),
where |V | is the number of nodes and |E| is the number
of edges in the graph. In STG, |V | = d1 · d2 · · · dN and
|E| ≤ N · d1 · d2 · · · dN (since there are at most N edges
from each node). Therefore, the time complexity of CSD
is O(d1d2 · · · dN ) + O(Nd1d2 · · · dN ) = O(Nd1d2 · · · dN ).
In practice, for N > 1, we have di ≥ 2 for each source
node i.4 Therefore, the time complexity of O(Nd1d2 · · · dN )
is no less than O(N · 2N ), which is exponential w.r.t. N . For
space complexity, since there are O(Nd1d2 · · · dN ) edges in
STG, the space complexity of CSD is also O(Nd1d2 · · · dN ).
Therefore, although CSD can determine d’s schedulability
with absolute certainty, its exponential complexity poses a
serious problem when N is large.

V. SPECIAL CASE: POLYNOMIAL MAT VECTORS

In this section, we consider a special MAT vector, called
polynomial MAT vector. In Section VI, we will use this
procedure as a basis to design a procedure for the general
(non-polynomial) MAT vectors.

A. Polynomial MAT Vectors and MAT Load

Definition 1: An MAT vector d is polynomial if di = b ·2ni

for 1 ≤ i ≤ N , where b is a positive integer and ni is a
non-negative integer.

For example, d = [5 5 10 20 20 40] is a polynomial MAT
vector with b = 5, n1 = n2 = 0, n3 = 1, n4 = n5 = 2 and
n6 = 3. On the other hand, d = {2, 4, 6, 8} is not polynomial
since we cannot find a b and ni such that di = b · 2ni .

In Section V-B, we will design a procedure that can find
a feasible scheduler for a polynomial MAT vector d under a
very general condition. To do this, we need a definition to tie
traffic load and MAT. First, we define the long-term average
data rate for source node i under scheduler π as

ri = lim
T→∞

1
T

T∑
t=1

[π(t) = i], (5)

where “[·]” is Iverson bracket, returning 1 if the statement
within is true and 0 otherwise [48]. The data rate ri is a direct
measure of the percentage of the time slots that are assigned
to source node i for transmission. Since each time slot can be
used for at most one such transmission, we have

N∑
i=1

ri ≤ 1. (6)

4If di = 1, source node i must transmit a sample in every time slot to
achieve feasibility. This means other source nodes cannot transmit any samples
and thus feasibility is not possible.

(6) gives an upper bound for the sum of rates. There
is also a lower bound associated with each ri. Specifically,
to satisfy di for each source node i, there should be at least
one transmission over consecutive di time slots. That is,

ri ≥ 1
di

, i = 1, 2, · · · , N. (7)

Intuitively, 1/di represents the minimum guaranteed rate that a
feasible scheduler should provision to source node i. We define
MAT load for an MAT vector d as

l(d) =
N∑

i=1

1
di

, (8)

which represents the sum of minimum guaranteed rate that a
feasible scheduler should provide to all source nodes. Clearly,
by (6), any d with l(d) > 1 is unschedulable, which is quite
intuitive.

Naturally, we would like to use the MAT load as a metric in
our design of a feasible scheduler. In the next section, we show
that for l(d) = 1 (maximum possible load), we can design a
feasible scheduler when d is polynomial.

B. Scheduling for Polynomial d

A Motivating Example: Consider six source nodes A, B, C,
D, E, F and a polynomial MAT vector d = [3 6 6 6 12 12]
corresponding to these six sources. It can be easily verified
(based on Definition 1) that d is polynomial and l(d) =
1. We now show how to construct a feasible scheduler by
exploiting the polynomial property.

Since the least common multiple (LCM) of the elements in
d is 12, we set the cycle length to 12 time slots as follows:

(������������),

where each � inside the “()” represents a yet-to-be-determined
scheduling decision for that time slot.

Since l(d) is exactly 1, we must have ri = 1/di under a
feasible scheduler. Thus, for each source node i, the length
between two adjacent transmissions must equal to di. There-
fore, we can iteratively assign time slots to source node A, B,
C, D, E, F , following the sequence dA ≤ dB ≤ dC ≤ dD ≤
dE ≤ dF . In the first iteration, we assign the first and every
dA = 3 time slots to source node A. The cycle becomes

(A��A��A��A��).

In the second iteration, we assign the second time slot and
every dB = 6 time slots following it to source node B. Since
dB is an integral multiple of dA, every dB time slots after the
second time slot is empty before this assignment. The cycle
now becomes

(AB�A��AB�A��).

Following the same token, we make the assignment for the
third, fourth, fifth and sixth iterations for source node C, D,
E, and F , respectively. The final cycle is

(ABCADEABCADF ),

and is a feasible scheduling solution for d.
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Fig. 3. A pseudocode for PSC.

Based on the key ideas in the above motivating example,
we outline a scheduling algorithm for polynomial MAT vec-
tors, which we call Polynomial Scheduler Construction (PSC).
Fig. 3 shows the pseudocode of PSC.

For PSC, we have the following lemma.
Lemma 4: For any polynomial MAT vector d with l(d) ≤ 1,

PSC can always find a feasible scheduler w.r.t. d.
Proof: Our proof is based on contradiction. Suppose PSC

cannot find a feasible scheduler for a polynomial MAT set d
with l(d) ≤ 1. Then PSC must terminate at an iteration i0
(i0 ≤ N), i.e., PSC failed to execute Step 4 or 5 at iteration
i0. Since l(d) ≤ 1 and in PSC we allocate ri = 1/di for
each i < i0, at the beginning of iteration i0 there must be an
empty time slot in the cycle. Therefore, PSC cannot terminate
on Step 4 at iteration i0, so the reason of this termination is
PSC cannot execute Step 5 at iteration i0. Denote the first
empty time slot at iteration i0 as t0. Then there exists an n
such that time slot (t0 + ndi0 ) is not empty, i.e., it has been
allocated to another source node i1 < i0. However, since d
is polynomial, di0 is an integer multiple of di1 . This means
if time slot (t0 + ndi0 ) has been allocated to source node i1,
then time slot t0 must have been allocated to source node
i1 as well, which contradicts to the fact that t0 is an empty
time slot. This completes our proof.

The significance of Lemma 4 is that for a polynomial MAT
vector d, PSC is guaranteed to find a feasible scheduler for
MAT load l(d) as high as 1.

To see PSC’s time complexity, note that in each iteration,
PSC will visit no more than dmax time slots in the cycle. So the
time complexity for each iteration is O(dmax). Since there are
N iterations, the total time complexity of PSC is O(Ndmax).

VI. SCHEDULING FOR GENERAL MAT VECTORS

In this section, we consider the general case when d may not
be polynomial. We present a novel algorithm called Fictitious
Polynomial Mapping (FPM), which can always find a feasible
scheduler when l(d) < ln 2 (≈ 69.3%) regardless of whether
d is polynomial or not.

A. Basic Idea

The basic idea is to “map” a general (non-polynomial) MAT
vector d that is under consideration to a polynomial MAT
vector by “tightening” one or more elements in d. In other
words, we can always offer a source with a new MAT that

is smaller than its requirement. If we can do this mapping
and the new reference polynomial MAT vector has a load no
greater than 1, then we can apply Lemma 4 and use PSC to
find a feasible scheduler.

Example: For a general MAT vector d = [3 6 7 8 12 13],
we can map (tighten) it to the polynomial MAT vector d1 =
[3 6 6 6 12 12]. Since the polynomial MAT vector has a load
l(d1) = 1, we can construct a feasible scheduler w.r.t. d1 and
use the same scheduler to satisfy d.

Naturally, we ask the following question: Can we always
map a schedulable MAT vector d to some polynomial MAT
vector with a load no greater than 1? Unfortunately, the answer
is No and can be illustrated in the following example.

Consider four source nodes A, B, C, D and a
non-polynomial MAT vector d = [3 5 5 5]. For this d, the
smallest MAT (3, for source node A) can only be mapped
to either 2 (tightening) or 3 (no change). If it is tightened
to 2, then the other MATs will be tightened to 4 (based
on Definition 1), and thus d is mapped to the polynomial
MAT vector d1 = [2 4 4 4], with load l(d1) = 1.25 > 1,
which is not helpful (we cannot use Lemma 4). If it is
mapped to 3 (unchanged), then the other MATs will be
tightened to 3, and thus d is mapped to the polynomial
MAT vector d2 = [3 3 3 3], with load l(d2) = 1.33 > 1,
which is again not helpful. However, as we shall soon
see, d is in fact schedulable, despite that it cannot be
mapped to a polynomial MAT vector with a load no greater
than 1.

To address the limitation of polynomial MAT vector,
we introduce a concept called “fictitious polynomial” as
follows.

Definition 2: A vector d̃ = [d̃1 d̃2 · · · d̃N ] is fictitious
polynomial if d̃i = b · 2ni for 1 ≤ i ≤ N , where b is a
positive integer and ni is an integer.

Note that the difference between Definition 2 and
Definition 1 is only in ni (positive integer or any integer
value). But this difference is significant as d̃i now can be a
fraction instead of just a positive integer as di. For example,
d̃ = [74

7
2 7 14 14] is not polynomial but is fictitious

polynomial with b = 7, n1 = −2, n2 = −1, n3 = 0, and
n4 = n5 = 1. Note that d̃1 and d̃2 here are fractions.

The next question is: What is the benefit of allowing ni to be
negative (or d̃i to be fractional) in this fictitious polynomial
definition? The answer is that it will give us much bigger
room for mapping. Let’s go back to the previous example d =
[3 5 5 5]. Under Definition 1, the smallest MAT in d can only
be mapped to 2 or 3, and both mapping will have an MAT load
greater than 1, which is not helpful. However, under fictitious
polynomial vector definition, we will have more options to
map the smallest MAT (i.e., 3) onto, say 5

2 (with b = 5)
and 7

4 (with b=7). Specifically, when 3 is mapped to 5
2 , the

MAT vector d is mapped to the fictitious polynomial vector
d̃ = [52 5 5 5], with a load l(d̃) = 1. In Section VI-B we will
present a low-complexity procedure to find a feasible scheduler
w.r.t. any MAT vector d that can be mapped to a fictitious
vector d̃ with l(d̃) ≤ 1. In particular, for d = [3 5 5 5] with
d̃ = [52 5 5 5], a feasible scheduler to d is (ABACD). The
readers can easily verify its feasibility.
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Fig. 4. Recursion in the example.

B. Scheduling for Fictitious Polynomial d̃

There are two results in this section. The first result is stated
in the following theorem.

Theorem 1: For any MAT vector d that can be mapped to
a fictitious polynomial vector d̃ with l(d̃) ≤ 1, there exist a
feasible scheduler w.r.t. d.

A proof of Theorem 1 is based on constructing one such
feasible scheduler, which should also be of low-complexity.
In this section, we present one such scheduler, called Fictitious
Scheduler Construction (FSC). FSC is the second main result
of this section.

FSC is best explained with an example.
Example: Consider six source nodes A, B, C, D, E, F with

d = [3 5 9 11 19 21]. During the initialization phase, we map
d to a fictitious polynomial vector d̃ = [ 94

9
2 9 9 18 18] with

b = 9 and l(d̃) = 1 (we will show how to find this d̃ in
Section VI-C). Now, we focus on showing how to construct a
feasible scheduler w.r.t. d based on d̃.

In Section V-B, we used LCM for di’s as cycle length
where di’s are all integers. But d̃i’s in d̃ can be frac-
tions and it’s necessary to generalize the definition of LCM.
We define fictitious common multiple (FCM) for d̃i’s in d̃ as
the smallest integer m such that m/d̃i is a positive integer for
all 1 ≤ i ≤ N .

Since the FCM of d̃i’s in d̃ is 18, we set the cycle length
c = 18. Denote Ni as the number of time slots scheduled
for source node i in a cycle c. As we did in Section V-B,
we reserve a long-term average data rate ri = 1/d̃i for each
source node i. It’s easy to see

∑N
i=1 ri ≤ 1 when l(d̃) ≤ 1.

Then we allocate Ni = c · ri = c/d̃i for each node i, and we
have NA = 8, NB = 4, NC = ND = 2, and NE = NF = 1.

We propose a recursive procedure to construct a feasible
scheduler for d, as shown in Fig. 4. The original problem
(after Initialization) is reduced to a smaller problem after
each recursion and degenerates into a trivial problem after
the last recursion. We will show how this recursive procedure
works.

After initialization (as we discussed above), we have d =
[3 5 9 11 19 21], d̃ = [94

9
2 9 9 18 18], l(d̃) = 1, c = 18 and

NA = 8, NB = 4, NC = ND = 2, NE = NF = 1.
At the beginning of Recursion 1, NE = NF = 1, which

means we need to assign one time slot to each source node
E and F in a cycle. Since this one time slot assignment can
be made anywhere in the cycle, we can defer this assignment
later. For now, we can remove nodes E and F from d and d̃,
and assign 16 time slots to other source node A, B, C, D in
the cycle with c = 18 time slots (and later use any remaining
two time slots to assign to nodes E and F ). Since c = 18,
NA = 8, NB = 4, NC = 2, and ND = 2 are all even, it is
sufficient to construct a feasible scheduler with c ← c/2 and
NA ← NA/2, NB ← NB/2, NC ← NC/2, ND ← ND/2.
Then we can combine the two identical cycles together and
form a full cycle with length 18.

Therefore, after Recursion 1, we have d = [3 5 9 11], d̃ =
[94

9
2 9 9], l(d̃) = 8

9 < 1, and c = 9, NA = 4, NB = 2,
NC = ND = 1.

At the beginning of Recursion 2, we have NC = ND = 1.
Again, we will first remove nodes C and D from d and d̃, and
then assign 6 time slots to source node A (with NA = 4) and
B (with NB = 2) in the cycle with length c = 9. Since NA and
NB are both even, we would like to divide the current cycle
into two identical but smaller cycles. But since the current
cycle length c = 9 is odd, we need to do some extra work here.
Now we construct a feasible scheduler with c← c+1

2 (which
is 5) and NA ← NA/2, NB ← NB/2. Then we can combine
the two identical cycles together and form a full cycle with
length 10, and remove one empty time slot to get a length 9.
Note that removing an empty time slot won’t increase the
AoI for any source node. With this cycle length reduction,
we update each element in d̃ with a factor c+1

c , which is 10/9.
Therefore, after Recursion 2, we have d = [3 5], d̃ = [52 5],

l(d̃) = 3
5 < 1, and c = 5, NA = 2, NB = 1.

Following the same idea in the previous recursive steps,
the problem is reduced to a trivial problem after Recur-
sion 4: to construct an empty cycle with c = 3. After
constructing it, we go back step-by-step in the recursion and
construct the following feasible scheduler w.r.t. the original d:
(ABCADABEAABCADABFA). The readers can easily
verify its feasibility.

Based on the key recursive ideas in the above example (i.e.,
remove some nodes that require only 1 time slot and cut down
cycle length in half in each step), we give a pseudocode for
FSC in Fig. 5.

With FSC in hand, we now prove Theorem 1 by showing
FSC can construct a feasible scheduler for any d that can be
mapped to d̃ with l(d̃) ≤ 1.

Proof Theorem 1: Suppose d can be mapped to d̃ with
l(d̃) ≤ 1. We are going to prove FSC can find a feasible
scheduler for it.

At the beginning of each recursion of FSC, we have a d
that can be mapped to d̃ with l(d̃) ≤ 1 and cycle length c
(the FCM of d̃i’s). We are going to show that if d �= ∅, FSC
can reduce the problem to a smaller problem, d1, that can be
mapped to d̃ with l(d̃) ≤ 1, with dim(d1) < dim(d).
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Fig. 5. A pseudocode for FSC.

We discuss c’s parity.
• If c is even, FSC will execute Step 3 and 4. Since d

can be mapped to d̃, d1 can also be mapped to d̃1.
Besides, l(d̃) ≤ l(d̃1) ≤ 1. Therefore, FSC cam success-
fully reduce the problem (w.r.t. d) to a smaller problem
(w.r.t. d1).

• If c is odd, FSC will execute Step 6, 7 and 9. For each
i such that d̃i ∈ d̃1, we have d̃i = c/2ni , where ni is
positive (since d̃i < c). Besides, for each i such that
di ∈ d1, we have di ≥ d̃i and di is an integer. Therefore,
for each i such that di ∈ d1, we have di ≥ 	d̃i
 ≥
c+1
2ni

= c+1
c d̃i, which means d1 can be mapped to c+1

c d̃1.
Besides, l( c+1

c d̃1) = c
c+1 · l(d̃1) ≤ c

c+1 < 1. Therefore,
FSC can successfully reduce the problem (w.r.t. d) to a
smaller problem (w.r.t. d1). Note that since l(d̃3) ≤ c

c+1 ,
there must be at least one empty time slot in the cycle
constructed in Step 6. So Step 7 can always find an empty
time slot to remove and construct a feasible cycle with
length c.

Therefore, for d1 �= ∅, FSC can reduce the problem to another
problem with a smaller c.

When d1 �= ∅, we have c > 0, since in the previous steps
neither c← c/2 nor c← (c+1)/2 can make c = 0. Therefore,
Step 9 can successfully construct an empty cycle with length c.
This completes our proof.

C. Mapping d to d̃

In this last section, we will show how to map d into d̃ with
l(d̃) ≤ 1. Recall this is a necessary step in the initialization
phase of FSC in the last section.

Fig. 6. A Pseudocode of FPM.

Note that there are infinite d̃’s that d can be mapped into,
and we only need to check whether one of them satisfies
l(d̃) ≤ 1. We introduce the following lemma to narrow down
the search space of d̃.

Lemma 5: To check whether d can be mapped to a d̃ with
l(d̃) ≤ 1, it’s sufficient to check those d̃’s with di = d̃i for at
least one i.

Proof: We prove this lemma by constructing d̃0 =
[d̃01 d̃02 · · · d̃0N ] that satisfies di = d̃0i for at least one i.
Specifically, if d can be mapped to d̃ with l(d̃) ≤ 1, then
we construct d̃0 as d̃0 = minj{dj/d̃j} · d̃. Clearly, d̃0 is
a fictitious polynomial vector to which d can be mapped,
l(d̃0) ≤ l(d̃) ≤ 1, and for i = argminj{dj/d̃j} we have
di = d̃0i. This completes the proof.

Based on Lemma 5, to map d into d̃ with l(d̃) ≤ 1, it is
sufficient to test N fictitious polynomial vectors with d̃i =
di, where i ∈ {1, 2, · · · , N}. More specifically, for each i ∈
{1, 2, · · · , N}, we compute the N elements in d̃ by

d̃j = di · 2�log2(
dj
di

)�
, for each j ∈ {1, 2, · · · , N}. (9)

Eq. (9) guarantees that d̃j ≤ dj for each j, d̃ is fictitious
polynomial, and d̃i = di. If for one i we have l(d̃) ≤ 1,
we can use FSC to construct a feasible scheduler. If for all i’s
we have l(d̃) > 1, then d cannot be mapped to any d̃ with
l(d̃) ≤ 1.

Now we can finalize the FPM procedure to find a feasible
scheduler for non-polynomial d, as shown in Fig. 6. Note that
when the deadlines are identical (i.e., d1 = d2 = · · · = dN )
and l(d) ≤ 1, FPM will always find a round-robin feasible
scheduler.

The following corollary directly follows from Lemma 5.
Corollary 5.1: If d can be mapped to any d̃ with l(d̃) ≤ 1,

FPM can always find a feasible scheduler w.r.t. d.
The following lemma shows the cycle length of the feasible

scheduler found by FPM is at most dmax, which is both
interesting and significant for practical implementation.

Lemma 6: The cycle length of the feasible scheduler found
by FPM is no greater than dmax.

Proof: Suppose in iteration i, d̃i = di, l(d̃) ≤ 1 and
FPM calls FSC to construct a feasible scheduler. For the
largest element in d̃, denoted by d̃max, we have d̃max =
di · 2�log2(

dmax
di

)� is a positive integer. By definition, d̃max is
the FCM of the elements in d̃ (as d̃max is an integer here).
So we have the cycle length c = d̃max ≤ dmax.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:01:38 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SCHEDULING WITH AoI GUARANTEE 9

We now analyze the time complexity of FPM. FPM com-
putes at most N different l(d̃)’s. Since the complexity of
computing one l(d̃) is O(N), the complexity for computing
all l(d̃)’s is O(N2). If there exists a d̃ such that l(d̃) ≤ 1,
then FPM will call FSC (at most once). By Lemma 6, we have
c ≤ dmax in FSC. Since after each recursion c is reduced to
	 c

2
, there are a total of O(log c) recursions. The complexity
of each recursion5 is O(c) (since the cycle length is always no
greater than c). Therefore, the time complexity of FSC (called
by FPM) is O(c log c) = O(dmax · log dmax). So the total time
complexity of FPM is O(N2) + O(dmax · log dmax).

VII. MAT LOAD VS. SCHEDULABILITY

In the last section, by introducing the notion of mapping
from physical d to fictitious d̃, we showed that FPM can
construct a feasible scheduler w.r.t. d as long as l(d̃) ≤ 1.
However, since di ≥ d̃i, we have l(d) ≤ l(d̃). Even though
FPM can find a feasible scheduler when l(d̃) ≤ 1, it is still
not clear how large l(d) can be for FPM to find a feasible
scheduler. A natural question becomes: What is the maximum
load l(d) while FPM is guaranteed to find a feasible scheduler?
We answer this question in this section.

By the mapping in (9), it is easy to see di < 2 · d̃i and
l(d̃) < 2·l(d). So for all d with l(d) ≤ 0.5, we are guaranteed
to find a feasible scheduler based on Theorem 1. The following
proposition shows that we can in fact do better than this.

Proposition 1: If l(d) ≤ ln 2, then FPM can construct a
feasible scheduler w.r.t. d.

Proof: We prove this proposition by proving its contrapos-
itive, i.e., if FPM cannot construct a feasible scheduler w.r.t.
d, then l(d) > ln 2.

Suppose FPM cannot construct a feasible scheduler w.r.t. d.
Then FPM cannot find a mapping to d̃ with l(d̃) ≤ 1, so we
have

l(d̃) =
N∑

j=1

1

di · 2�log2(
dj
di

)�
> 1, for i = 1, 2, · · · , N. (10)

Define the following function f(x):

f(x) =
N∑

j=1

1

x · 2�log2(
dj
x )�

for x ∈ R>0. (11)

Clearly, we have f(2x) = f(x) for any x. Denote x∗ as the
optimal value that minimizes f(x). Then di/x∗ must be a
power of 2 for at least one i, otherwise we can slightly increase
x∗ to get a smaller f(x). So we have f(x∗) = f(di) for
at least one i. From (10) and (11), we have f(di) > 1 for
i = 1, 2, · · · , N . So we have

f(x) > 1 for x ∈ R>0. (12)

Define y = 1/x. Replacing x with 1/y in (12), along
with (11), we have

N∑
j=1

y · 2−�log2(djy)� > 1, for y ∈ R>0. (13)

5We assume N ≤ dmax. Since for any d with N > dmax, d is clearly
unschedulable (with l(d) > 1).

Define g(y) = 1
y·ln 2 . We have∫ 1

0.5

g(y)dy = 1 (14)

Define uj as

uj =
1
dj
· 2�log2(dj)�, j = 1, 2, · · · , N. (15)

We have uj ∈ (0.5, 1] for each j = 1, 2, · · · , N .
Multiplying the two sides of (13) and (14) respectively,

we have ∫ 1

0.5

g(y) ·
N∑

j=1

y · 2−�log2(djy)�dy > 1. (16)

Substituting g(y) = 1
y·ln 2 into (16), we have

1
ln 2

N∑
j=1

∫ 1

0.5

2−�log2(djy)�dy > 1. (17)

Breaking the integral in (17) with uj , we have

1
ln 2

N∑
j=1

(∫ uj

0.5

2−�log2(dj)�+1dy +
∫ 1

uj

2−�log2(dj)�dy
)

> 1,

which gives us:

1
ln 2

N∑
j=1

(
2−�log2(dj)� · (2uj−1)+2−�log2(dj)� · (1−uj)

)
>1,

or equivalently,

1
ln 2

N∑
j=1

uj · 2−�log2(dj)� > 1. (18)

Substituting (15) into (18), we have

1
ln 2

N∑
j=1

1
dj

> 1,

which gives us

l(d) > ln 2.

This completes our proof.
Proposition 1 tells us ln 2 is a valid guarantee for FPM.

We will then show it is also the largest guarantee that FPM
can offer. Consider a special group of MAT vectors, denoted
by dn, which is defined as dn = [n n + 1 n + 2 · · ·
2n− 1 2n]. It can be shown that for any n ∈ N

+, dn cannot
be mapped to any d̃ with l(d̃) ≤ 1. Thus FPM cannot find a
feasible scheduler for dn. Considering limn→∞ l(dn) = ln 2,
we conclude that ln 2 is indeed the largest guarantee that FPM
can offer.

VIII. NUMERICAL RESULTS

In this section, we use simulations to validate our theoretical
results and evaluate our algorithms. We also compare them to
EDF, a well-known scheduler. An EDF scheduler is given as

πEDF(t) = argmin
i

(
di −Ai(t)

)
, (19)

under which the source with the earliest deadline is selected
for transmission at each t.
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TABLE III

CASE STUDY: N = 5

TABLE IV

CASE STUDY: N = 100

A. Feasibility Check

In this section, we validate that the schedulers found by our
algorithms (CSD and FPM) are feasible, i.e, the maximum
AoI for each source i is no greater than di. Our validation is
based on case studies.

1) Small N : First we consider N = 5 source nodes, with
d = [3 5 7 10 12]. The MAT load is l(d) = 0.860. Since N is
small, we are able to execute CSD even though the complexity
is exponential.

In CSD, the first step is to construct STG, where there are
12,600 nodes and 29,076 edges. We use DFS to detect cycle
in this STG, and find one feasible scheduler:

π1 = (ABABACEABDAACBACBAEDABCAAC

BADEABCAABACDABEAACBAADABCA

EABACD).

For our algorithm FPM, for each i = 1, 2, · · · , N we
compute d̃ by (9) and try to find one d̃ with l(d̃) ≤ 1. We find
that when i = 2, d̃ = [0.4 0.2 0.2 0.1 0.1] with l(d̃) = 1.
Then we call FSC to construct the scheduler

π2 = (ABCADABCAE).

We list the largest Ai(t) for each source node i =
1, 2, 3, 4, 5 under π1 and π2 in the last two rows of Table III.
We can see that Ai(t) ≤ di for each i under both π1 and
π2, so they are indeed feasible schedulers. Also note that the
scheduler constructed by FSC has a much smaller cycle than
that by CSD (10 vs. 59).

2) Large N : We now consider N = 100 source nodes that
are organized in 10 groups, each each group having the same
MAT, as shown in Table IV. The load is l(d, �, p) = 0.658.
Since N is large, we are not able to execute CSD due to
its exponential complexity. So we can only validate our FPM
and FSC. In FPM, for each i = 1, 2, · · · , N we compute d̃ by
(9) and try to find one d̃ with l(d̃) ≤ 1. We find that when
i = 1, l(d̃) = 1. We use FSC to construct a feasible scheduler
π (with cycle length c = 240. For each group of 10 nodes,
we list the largest Ai(t) in the group (e.g., for the 10 source
nodes in group G1, 60 is the largest among A1(t), A2(t), · · · ,
A10(t) for all t > 0) in the last row of Table IV. We can see

TABLE V

SCHEDULING BEHAVIOR OF FPM, CSD AND EDF

TABLE VI

FEASIBLE SCHEDULERS FOUND BY FPM FOR DIFFERENT d’S

that Ai(t) ≤ di for all i = 1, 2, · · · , 100. So our scheduler
constructed by FPM is indeed feasible.

B. Compare to EDF: Small N

In this section we compere our schedulers to EDF when
N is small. In Table V, we present results of FPM, CSD,
and EDF for various d. In the table, if a feasible scheduler
is found by the underlying algorithm, we mark it by ✓and
show its cycle length c. Otherwise (i.e., a feasible scheduler
cannot be found by the underlying algorithm), we mark it by
✗. Not surprisingly, we see that CSD has the best performance.
However, FPM’s performance is quite close: It only fails to
find a feasible scheduler when d = [4 6 7 8 10 12]. On the
other hand, EDF has the worst performance. Further, for any
l(d) ≤ ln 2, FPM can find a feasible scheduler, which confirms
the result in Proposition 1. Also, the cycle length of the
feasible schedulers found by FPM is always no greater than
dmax, which confirms the result in Lemma 6.

For those d’s in Table V for which FPM can find feasible
schedulers, we present the feasible schedulers in Table VI. The
readers can easily verify their feasibility. Note that we didn’t
remove the empty time slots after executing FPM. If they are
removed, the scheduler is still feasible.

In Fig. 7, we show the performance of FPM, CSD, and
EDF when N = 5. We assume di ∈ {2, 3, · · · , 20}
for each source node i = 1, 2, · · · , 5, and randomly gen-
erate 100 different d’s for each load interval l(d) ∈
(0.3, 0.32], (0.32, 0.34], · · · , (0.98, 1]. For each d, we run
FPM, CSD and EDF and calculate the rate (percentage) of
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Fig. 7. Success rates for FPM, CSD, and EDF under different l(d) when
N = 5.

Fig. 8. Success rate for FPM and EDF under different l(d) when N = 20.

success for finding a feasible scheduler. In Fig. 7, we see
that the performance of FPM is close to CSD (the optimal
algorithm). In particular, when l(d) ≤ ln 2, the success rate
of FPM is 100%, which confirms the result in Proposition 1.
Also, EDF’s performance is significantly inferior to FPM.

As we can see, in this AoI scheduling problem EDF doesn’t
perform very well. This is because EDF scheduler is designed
to address a different problem. In that problem (for which
EDF was designed), we are given a set of tasks—with each
task having its arrival time and deadline being independent
of the scheduler. In contrast, in the MAT guarantee problem
in this paper, the equivalent “arrival time” and “deadline” (as
observed on wall-clock time) are dependent on the scheduler,
i.e., an earlier transmission from a source node will lead to an
earlier equivalent “arrival time” and “deadline” for the next
transmission for the same source. With this subtle difference,
the EDF scheduler is not designed to solve the MAT guarantee
problem and our simulation results show that.

C. Compare to EDF: Large N

When N becomes sufficiently large, we will not be able
to execute CSD due to its exponential time complexity.
In this regime, we will only show results for FPM and
EDF. Fig. 8 shows the performance of FPM and EDF
when N = 20. We assume di ∈ {10, 20, 30, · · · , 150}
for each source node i = 1, 2, · · · , 20, and we randomly
generate 100 different d’s for each load interval l(d) ∈
(0.3, 0.32], (0.32, 0.34], · · · , (0.98, 1]. For each d, we run

Fig. 9. Success rate for FPM and EDF under different l(d) when N = 50.

Fig. 10. Success rate for FPM and EDF under different l(d) when N = 100.

FPM and EDF6 and calculate the rate (percentage) of success
for finding a feasible scheduler. In Fig. 8, we see that the
performance of FPM is far better than EDF. Also, when
l(d) ≤ ln 2, the success rate of FPM is 100%, which confirms
the result in Proposition 1.

Fig. 9 shows the performance of FPM and EDF when N =
50 (with di ∈ {10, 20, 30, · · · , 400} for each source node i =
1, 2, · · · , 50) and Fig. 10 shows the performance of FPM and
EDF when N = 100 (with di ∈ {10, 20, 30, · · · , 800} for each
source node i = 1, 2, · · · , 100). We have similar results for
both cases: FPM performs better than EDF, and when l(d) ≤
ln 2, the success rate of FPM is 100%.

D. FPM Under Different N

We then investigate the impact of the number of source
node, N , on FPM. We consider 5 different N ’s: N =20, 40,
60, 80, and 100. For each N , we consider four load intervals
l(d) ∈ [0.68, 0.69], [0.79, 0.8], [0.84, 0.85], and [0.89, 0.9].
Note that 0.69 < ln 2. So for l(d) ∈ [0.68, 0.69], the success
rate should be 1 under FPM, while for the other three load
intervals, the success rate may be less than 1.

For N = 20, we assume di ∈ {10, 20, 30, · · · , 150}.
We randomly generate 100 different d’s for each load interval,
and calculate the success rate. For N = 40, we assume
di ∈ {10, 20, 30, · · · , 300}; for N = 60; we assume
di ∈ {10, 20, 30, · · · , 450}; for N = 80, we assume
di ∈ {10, 20, 30, · · · , 600}; for N = 100 we assume di ∈
{10, 20, 30, · · · , 750}.

6For EDF, we simulate the first 100,000 time slots. If d is satisfied in this
interval, we consider EDF feasible.
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Fig. 11. Success rate for FPM under different N .

Fig. 12. Success rate for FPM under different d distribution.

The results are shown in Fig. 11. For load interval
[0.68, 0.69] the success rates are indeed 1 for all N . This
affirms that Proposition 1 is correct. For the other three load
intervals with l(d) > ln 2, the success rate decreases as N
increases. This is intuitive as the more the source nodes,
the greater the challenge for the scheduler to find a feasible
solution to meet the MATs of all source nodes.

E. FPM Under Different d Distribution

We now investigate the impact of d’s distributions on FPM.
We assume N = 100 source nodes. We assume three different
set: D1 = {10, 11, 12, · · · , 800}, D2 = {10, 20, 30, · · · , 800},
and D3 = {10, 100, 200, 300, · · · , 800}. For each set
Dk (k = 1, 2, 3), we randomly generate 100 differ-
ent d’s with di ∈ Dk for each load interval l(d) ∈
(0.4, 0.42], (0.42, 0.44], · · · , (0.98, 1]. Then we apply FPM
and calculate the success rate for this interval. The results
are shown in Fig. 12.

Again we see that under any distributions of d, the success
rate is 1 when l(d) ≤ ln 2. But when l(d) > ln 2, the
distribution of d does affect the performance of FPM. Since
Di’s are all in the range of [10, 800], the greater the granularity
of MATs, the worse the FPM’s performance.

IX. CONCLUSION

We studied scheduling subject to AoI performance guaran-
tee. Specifically, we investigated the following two intertwined
problems for AoI scheduling at network edge: (i) For a given

MAT vector d, determine whether it is schedulable; and (ii) If
d is schedulable, find a feasible scheduler. To narrow down the
search space, we first proved that if d is schedulable, then there
must exist a feasible cyclic scheduler w.r.t. d. Based on this
result, we proposed an error-free procedure CSD, which can be
used to solve the two problems when the network size is small.
For a large network, we introduced a load concept based on a
given MAT vector and presented a low complexity procedure
PSC that can find a feasible scheduler for any polynomial d
with l(d) ≤ 1. For general (non-polynomial) d’s, we presented
FPM that can find a feasible scheduler for any d that can be
mapped to a fictitious polynomial vector d̃ with l(d̃) ≤ 1.
We proved that FPM can find a feasible scheduler for any d
with l(d) ≤ ln 2, and the cycle length of the scheduler is no
great than dmax (the largest element in d). We used numerical
results to validate our theoretical results. We also found that
the performance of FPM is significantly better than EDF.
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