
Aequitas: A Uniformly Fair 5G Scheduler for
Minimizing Outdated Information

Chengzhang Li† Qingyu Liu† Y. Thomas Hou† Wenjing Lou† Sastry Kompella‡
†Virginia Polytechnic Institute and State University, Blacksburg, VA

‡US Naval Research Laboratory, Washington, DC

Abstract—Age of information (AoI) is a key metric to measure
the freshness of information for IoT applications. This paper
investigates a scheduling problem in a 5G network where there
is an AoI threshold for each source node at the edge base station
(BS). Our goal is to design a 5G scheduler to minimize the
proportion of time when the information stored at the source
is outdated, i.e., when the AoI is beyond its threshold. For
performance benchmark, we develop an offline computational
procedure to find a lower bound for the objective value. Then
we derive a property called uniform fairness for an offline optimal
scheduler and use this property as a guideline to develop an online
5G scheduler—Aequitas. To meet the sub-millisecond real-time
requirement in 5G, we implement Aequitas on an off-the-shelf
GPU. Through experiments, we show that the objective achieved
by Aequitas is close to the lower bound and its running time is
under 1 ms.

I. INTRODUCTION

Age of Information (AoI) is an application-layer metric for
latency that was first conceived by Kaul et al. [1], [2]. It is
defined as the elapsed time for a sample (stored at a particular
location, e.g., edge or cloud) between current time and the
time when the sample was first generated at its source. AoI
has been used as a measure of information freshness for the
sample stored at a location.

There has been active research on designing schedulers
for AoI related objectives (see an online bibliography in
[3]). However, most of existing efforts share two common
limitations. First, a majority of existing literature consid-
ers static channels or perfect channel state knowledge for
tractability [4]–[7]. However, in most real-world scenarios,
such an assumption does not hold. For example, wireless
channel conditions are highly dynamic and unknown a priori.
As such, an optimal scheduler with guaranteed performance
is hardly possible. One must address issues with unknown
future knowledge and design an online scheduler to cope
with non-idealized scenarios in practice. Second, existing
literature on AoI scheduler design employs overly simplified
models, which can hardly be deployed for real systems [8]–
[15]. As real-world communication systems must be standards
compliant, it is important to design schedulers that conform
to standards from the very beginning of the design phase
(rather than an afterthought of theoretical exercise). As 5G
NR has been widely adopted for wireless communications,
including IoT applications, it’s of utmost importance to design
AoI schedulers that conform to 5G standards [16].

To address these limitations, we focus on designing online
AoI schedulers that are 5G-compliant. We consider a canonical

setting where a group of source nodes collect information
and forward it to a base station (BS) through a shared
wireless channel. At the BS, we assume that there is a unique
AoI threshold for information (sample) from each source.
Given the unknown nature of future channel conditions, it is
unrealistic to demand a hard guarantee of AoI threshold for
each source. Instead, it is more reasonable to minimize the
proportion of time for each source when its information is
outdated (i.e., AoI threshold is exceeded). In particular, it is
plausible to ask for a scheduler that minimizes the maximum
proportion of outdated information among all source nodes.

There are a number of challenges to design such a scheduler.
First, an online scheduler is intrinsically difficult to design,
due to the unknown knowledge of the future (e.g., channel
conditions). Second, there are some unique considerations
associated with 5G scheduling, such as frequency-time re-
source grids (RBs) and modulation and coding scheme (MCS)
[17]. In each transmission time interval (TTI) the scheduler
needs to allocate ∼100 RBs to ∼100 source nodes, as well
as select one MCS (from 29 levels) for each source node,
which presents an extremely large search space. Finally, a 5G
scheduler has a stringent real-time requirement: the scheduler
must make scheduling decisions within one TTI, which is in
sub-millisecond time scale. Designing a scheduler that meets
all the above three requirements is not a trivial task, especially
for the AoI optimization objective that we wish to achieve
in this paper. The main contributions of this paper are the
following:

• We investigate a 5G IoT network for data collection with
the objective of finding an online scheduler to mini-
mize the maximum proportion of outdated information
among all source nodes. For performance benchmark,
we develop an offline computational procedure to find
a lower bound for the objective value. The lower bound
is obtained via a series of relaxation and reformulation,
following which an effective technique can be applied to
solve the reformulated optimization problem.

• We develop an important and interesting property, called
uniform fairness, that is associated with an offline optimal
scheduler. It says that there exists an optimal offline
scheduler to our objective, under which the proportion of
outdated information by all source nodes should converge
to the same value as time becomes large, regardless of
the difference in AoI thresholds and sample sizes among

IoT source nodes

Wireless channel

Cellular Base station (BS)

Figure 1: System model: N source nodes collect information
and send it to a BS.

the source nodes. This interesting property offers us an
important guideline in our design of an online scheduler
where we only have knowledge of the past and present,
not the future.

• We present Aequitas—an online 5G scheduler to optimize
our objective. At the heart of Aequitas is a novel prior-
ity metric that takes the AoIs, AoI thresholds, channel
conditions and historical performance behavior into con-
sideration. By computing this priority metric iteratively
in each time slot (TTI), Aequitas performs RB allocation
and MCS selection for the source nodes that are selected
for transmission.

• Although the time complexity of Aequitas is polynomial,
its running time is still too long to meet the 5G timing
requirement. We propose to exploit Aequitas’ intrinsic
property (amenable to parallel computation) and imple-
mentent it on an off-the-shelf GPU platform. Experi-
mental results show that Aequitas can achieve excellent
performance in terms of objective function (i.e., close to
the lower bound) and its running time is under 1 ms.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section we present the 5G data collection network
model and state the min-max scheduling problem in this paper.

A. System Model

We consider a 5G-based IoT network where N source nodes
collect information and forward it to a base station (BS) (see
Fig. 1). Each source node takes a new sample at the beginning
of each transmission time interval (TTI). For source node i,
denote Li as the sample size (in unit of bits), which is the
amount of information carried in a sample. We assume the
sample size (Li) only depends on its source and is invariant
over time. The BS maintains the most recent (freshest) sample
from each source. Once a new sample from a source node is
received completely by the BS, the BS deletes the previous
sample and replaces it with this new one.

The source nodes transmit information (collected samples)
to the BS through a 5G uplink channel. In 5G, uplink
transmission resource is organized into 2-dimensional grids
of resource blocks (RBs) that span both time and frequency
domains [17]. In the time domain, time is equally slotted into
TTIs, while in the frequency domain, bandwidth is equally

slotted into a large number of sub-carriers, and 12 sub-carriers
over a TTI is called an RB. RB is the smallest scheduling unit
in 5G, and in each TTI there is a large number of RBs that
can be allocated to the source nodes for uplink transmission.
Due to channel fading (both time-selective and frequency-
selective), the channel conditions on different RBs are different
in general, even with respect to the same source node.

The BS employs a scheduler to allocate the uplink RBs
to the source nodes based on the channel conditions in each
TTI. Denote B as the total number of RBs that is available for
uplink transmission in each TTI. We assume one RB can be
allocated to at most one source node in each TTI. Denote xb

i (t)
as a binary variable indicating whether RB b ∈ {1, 2, · · · , B}
is allocated to source node i at TTI t. We have

xb
i (t) =

{
1 if RB b is allocated to node i at TTI t,
0 otherwise,

and ∑
i∈N

xb
i (t) ≤ 1, b ∈ {1, 2, · · · , B}. (1)

In each TTI, the scheduler also needs to choose a modula-
tion and coding scheme (MCS) for each source node [17].
The MCS of each source node determines the modulation
and coding rate—how much information (in unit of bits) is
modulated and coded within each RB for this source node. The
higher the MCS is, the higher the modulation and coding rate
is. On the other hand, the maximum amount of information
that can be successfully transmitted by an RB depends on the
channel condition. If the channel condition for this RB is poor
and the source node uses a high MCS, information carried in
the RB will not be successfully decoded by the BS.

Under 5G, there are M = 29 different levels of MCSs [17].
We assume m = 1 is the lowest MCS and m = 29 is the
highest MCS. Denote qbi (t) as the maximum MCS level that
source node i’s channel can support on RB b at TTI t. We
have:

0 ≤ qbi (t) ≤ M.

In practice, qbi (t) is determined by the channel quality indicator
(CQI) report carried in the feedback from source node i at
TTI (t − 1). Denote cm as the modulation and coding rate
under MCS level m, which can be found in Table 5.1.3.1-1 in
[17]. Denote rb,mi (t) as the achievable data rate by RB b w.r.t.
source node i under MCS m. If m ≤ qbi (t), the transmission is
successful and the achievable data rate is cm. Otherwise, i.e.,
m > qbi (t), the transmission is unsuccessful and the achievable
data rate is 0. We have:

rb,mi (t) =

{
cm if m ≤ qbi (t),

0 otherwise.
(2)

Note that although each RB can only be allocated to at most
one source node in a TTI, a source node may be allocated with
multiple RBs. For a source node allocated with multiple RBs,
it must choose and use one MCS m ∈ {1, 2, · · · ,M} for
all its allocated RBs [17]. Denote ymi (t) as a binary variable

indicating whether MCS m ∈ {1, 2, · · · ,M} is chosen by
source node i at TTI t, i.e.,

ymi (t) =

{
1 if MCS m is chosen for source i at TTI t,
0 otherwise.

We have

M∑
m=1

ymi (t) ≤ 1, i ∈ {1, 2, · · · , N}. (3)

Denote Ri(t) as the amount of information transmitted by
source node i in TTI t across all RBs allocated to it. We have

Ri(t) =
∑
b∈B

∑
m∈M

xb
i (t)y

m
i (t)rb,mi (t), i ∈ {1, · · · , N}. (4)

Recall that the sample size for source i is Li. In TTI t, if
Ri(t) ≥ Li, then this sample can be transmitted completely
within this TTI. Otherwise, part of the sample will be left to
the following TTI(s) for transmission.

B. AoI Notation

AoI is location-dependent. AoI at the BS is defined as the
elapsed time between the present and the time when the sample
(stored at the BS) was generated at its source [1], [2]. For the
most recent sample from source i that is currently maintained
by the BS, denote Ui(t) as its generation time. Then the AoI
for source node i at the BS, denoted as Ai(t), is:

Ai(t) = t− Ui(t). (5)

The transmission of a sample under our 5G model may
span multiple TTIs. Denote τi(n) (in unit of TTIs) as the time
duration from the beginning of the TTI when the transmission
starts to the end of the TTI when the transmission ends for
the n-th sample (n = 1, 2, · · ·) from source node i. Clearly,
τi(n) is an integer with τi(n) ≥ 1.

• At the end of TTI t, if no sample from source node i
arrives at the BS, then at the beginning of TTI (t+1) its
AoI at the BS will increase by one.

• On the other hand, if the n-th sample arrives at the end
of TTI t (i.e., TTI t is the last time slot of τi(n)), then
the new sample’s generation time is the beginning of TTI
t−τi(n)+1.1 Then at the beginning of TTI (t+1), the BS
has the complete new sample and Ui(t+1) = t+1−τi(n).
We have:

Ai(t+ 1) = t+ 1− Ui(t+ 1) = τi(n).

Combining the two cases, we have:

Ai(t+ 1) =

{
Ai(t) + 1, if no sample arrives in t,
τi(n), if n-th sample arrives in t.

(6)

1We assume the time to collect a sample at a source is instant and does
not take any TTIs.

C. Problem Statement

In this paper, we assume that each information source has
an AoI threshold limit at the BS, denoted by di. Due to
the heterogeneity of IoT applications, di may vary among
different sources. For each source node i, when its AoI (of the
stored sample) at the BS is no greater than di, we consider
the information is fresh; when its AoI is greater than di, we
consider the information as outdated (not fresh). Our goal is
to minimize the proportion of time when the information at
the BS is outdated across all source nodes.

More formally, denote vi as the proportion of TTIs when
the information from source i is outdated at the BS. We have:

vi = lim
T→∞

1

T

T∑
t=1

[Ai(t) > di], (7)

where “[·]” is Iverson bracket, returning 1 if the inside state-
ment is true and 0 otherwise. Denote vmax as the largest among
all vi’s, i.e.,

vmax = max
i∈{1,2,··· ,N}

vi. (8)

So a plausible objective is to minimize vmax. This is the
objective of our optimization problem. Note that vmax is also
a long-term metric, just as the vi’s.

To recap, we want to design a 5G scheduler that allocates
B RBs to N source nodes in each TTI, and to choose one
MCS from M levels for each source node so that vmax is
minimized. We have the following optimization problem.

OPT: min vmax

s.t. RB allocation constraint (1),
MCS selection constraint (3),
Calculation of data rates (2), (4),
Calculation of AoI (6),
Calculation of outdated proportion (7), (8).

In problem OPT, the decision variables are xb
i (t)’s and ymi (t)’s

for each TTI t.
There are a number of technical challenges to the design

of a scheduler. First and foremost, the scheduler will be an
online algorithm, without any knowledge of future information
(including channel conditions) So it is impossible to obtain a
provably optimal scheduler. Second, the search space of OPT
is very large. In each TTI there are BN possibilities for xb

i (t)’s
and NM possibilities for ymi (t)’s (e.g., when B = N = 100
and M = 29, the search space consists of 1.7 × 10346

possibilities). Finding a near-optimal solution from this search
space is challenging. Finally, a 5G scheduler has a stringent
real-time requirement. The scheduler must make scheduling
decisions within one TTI, which is in sub-millisecond time
scale under 5G. It is very challenging to find a near-optimal
scheduling solution in such a time scale.

III. PERFORMANCE BOUND

Since the scheduler that we will design addresses an online
scheduling problem (with no knowledge of the future), it is

impossible to find a provably optimal one. Nevertheless, in
this section we will derive a lower bound for the objective
vmax, which can serve as a benchmark for the performance of
any proposed scheduler.

A. A New Objective Function for Lower Bound

For any scheduler π, denote Ri as the long-term average
data rate for source node i, i.e.,

Ri = lim
T→∞

1

T

T∑
t=1

Ri(t). (9)

Denote pi as the fraction of TTIs when samples from source
i arrive at the BS. Recall the sample size for source i is Li.
It is easy to see pi is proportional to Ri with a factor Li, i.e.,

Ri = pi · Li. (10)

Note that a new sample from source i can ensure AoI at the
BS for that source not to exceed its threshold limit for no
more than di TTIs. So with pi, the fraction of TTIs with AoI
for source i being under its threshold limit is no greater than
pidi. Recall (1− vi) is the proportion of TTIs with source i’s
AoI being under di. Therefore, we have

1− vi ≤ pidi =
Ridi
Li

, (11)

which is equivalent to

vi ≥ 1− Ridi
Li

. (12)

For vmax in (8), we have

vmax ≥ max
i∈{1,2,··· ,N}

{1− Ridi
Li

}. (13)

To find a lower bound to OPT, we can relax its objective
vmax to the RHS of (13). So we have the following new
optimization problem for the lower bound (LB):

OPT-LB: min max
i∈{1,2,··· ,N}

{1− Ridi
Li

}

s.t. Constraints (1), (2), (3), (4).

Since optimal objective value of OPT-LB is always no greater
than the objective of OPT, it can can serve as a lower bound
for vmax. Note that constraints (6), (7) and (8) are no longer
included in OPT-LB because they do not affect either the new
objective function or other constraints in OPT-LB.

B. Reformulation and Relaxation

Instead of working with {1−Ridi

Li
} in the min max function,

we can rewrite the objective function in OPT-LB as max min
function as follows:

OPT-LB2: max min
i∈{1,2,··· ,N}

{Ridi
Li

}

s.t. Constraints (1), (2), (3), (4).

Clearly, OPT-LB and OPT-LB2 are equivalent.

OPT-LB2 is a scheduling problem to maximize a utility
function of Ri. In [18] the authors studied a similar problem
and showed that a gradient scheduling algorithm can achieve
the optimal objective value asymptotically (when the number
of TTIs goes to infinity). However, the utility function in [18]
is required to be a concave smooth function. But the utility
function in OPT-LB2 (mini{Ridi

Li
}) isn’t smooth. To address

this issue, we will perform a relaxation for the utility function
as follows.

Define a smooth min function Sα with parameter α > 0 for
x1, x2, · · · , xN > 0 as:

Sα(x1, x2, · · · , xN) =

∑N
i=1 xie

−αxi∑N
i=1 e

−αxi

. (14)

Since Sα(x1, x2, · · · , xN) > min{x1, x2, · · · , xN} for any
x1, x2, · · · , xN > 0, we can perform a relaxation to OPT-LB2
as following, which we denote as OPT-LB-α:

OPT-LB-α: max Sα(
R1d1
L1

,
R2d2
L2

, · · · , RNdN
Li

)

s.t. Constraints (1), (2), (3), (4).

Clearly, the optimal objective of OPT-LB-α, denoted by S∗
α, is

always greater than the optimal objective of OPT-LB2. Then
(1−S∗

α) is always smaller than the optimal objective of OPT-
LB, so it can serve as a lower bound for vmax.

Note that when α → ∞, Sα(x1, x2, · · · , xN) =
min{x1, x2, · · · , xN}. So we always choose a large α to
tighten the relaxation.

C. Solving OPT-LB-α

In OPT-LB-α, the objective Sα(x1, x2, · · · , xN) is smooth
and concave. It has been shown in [18] that the so-called
gradient scheduling algorithm can be used to solve it.
Gradient Scheduling Algorithm In a gradient scheduling
algorithm, an empirical data rate Re

i (t) is defined for each
TTI t and updated as an exponentially smoothed average as
follows:

Re
i (t+ 1) = (1− β) ·Re

i (t) + β ·Ri(t), (15)

where β is a small positive constant (e.g., 0.01) and Ri(t) is
the instantaneous data rate at TTI t and is given in (4).

Denote Re(t) = [Re
1(t) Re

2(t) · · · Re
N (t)]T and r =

[r1 r2 · · · rN]T . The gradient scheduling algorithm solves
OPT-LB-α by maximizing the following gradient-based ob-
jective function:

N∑
i=1

∂Sα(
r1d1

L1
, r2d2

L2
, · · · , rNdN

LN
)

∂ri

∣∣∣
r=Re(t)

Ri(t)

in each TTI t. Note that

∂Sα

∂ri

∣∣∣
r=Re(t)

=
die

−αdiR
e
i (t)

Li

(
1 + α(Sα − diR

e
i (t)

Li
)
)

Li

∑N
j=1 e

−
αdjR

e
j
(t)

Lj

. (16)

Denote the RHS of (16) as gi(t). Then the gradient scheduling
algorithm aims to maximize

∑N
i=1 gi(t)Ri(t) in every TTT t.

Algorithm 1

Input: α, β, T , qbi (t) for all i’s, b’s and t’s.
Output: A lower bound for vmax.

1: Set Re
i (0) = 0 for each i = 1, 2, · · · , N .

2: for t = 1, 2, · · · , T do
3: Solve OPT-LB-t and get the optimal solution xb

i (t)’s
and ymi (t)’s.

4: Use xb
i (t)’s and ymi (t)’s to perform scheduling at TTI

t and get the data rate Ri(t) for each i = 1, 2, · · · , N .
5: Use (15) to update Re

i (t) for i = 1, 2, · · · , N .
6: end for
7: Let Ri = Re

i (T) for each i = 1, 2, · · · , N .
8: Substitute Ri’s into the objective of OPT-LB-α to get S∗

α,
and use (1 − S∗

α) as a lower bound for vmax. If S∗
α > 1,

then use 0 as the lower bound.

0 200 400 600 800 1000

t (TTI)

0

0.2

0.4

0.6

0.8

1

1
−

S
∗ α

Figure 2: An illustration of convergence behavior of Algo-
rithm 1 when α = 10 and β = 0.01.

With Ri(t) given in (4), we have the following optimization
problem OPT-LB-t in every TTI t:

OPT-LB-t: max
∑
i∈N

∑
b∈B

∑
m∈M

gi(t)r
b,m
i (t)xb

i (t)y
m
i (t)

s.t. Constraints (1), (2), (3),

where the decision variables are xb
i (t)’s and ymi (t)’s. Problem

OPT-LB-t is an integer quadratic program (IQP), which can
be solved by a commercial solver such as CPLEX [19]. We
need to solve OPT-LB-t for a large number (say T) of TTIs.
Then we let Ri = Re

i (T) and substitute Ri’s into the objective
of OPT-LB-α to get S∗

α—the optimal objective to OPT-LB-α.
And we can use (1− S∗

α) as a lower bound of vmax.
Algorithm 1 presents a pseudocode for using the gradient

scheduling algorithm to find a lower bound for vmax. Note
that vmax cannot be less than 0. So if the algorithm gives a
value less than 0, we can instead use 0 as the lower bound.
Example Consider a network with N = 100 and B = 100
with the simulation settings in Section V-A. For α = 10 and
β = 0.01, we run Algorithm 1 for T = 1, 000 TTIs and show
the convergence behavior of 1−S∗

α (which we use as a lower
bound for vmax) in Fig. 2. We can see that setting T = 1, 000
is adequate as the terminating time. At T = 1, 000, the value
of (1−S∗

α) is 0.367, which is the lower bound for this example.

IV. ALGORITHM DESIGN

In this section we present Aequitas2—a real-time scheduler
to solve problem OPT.

2Aequitas is the Latin concept of justice, equality, and fairness.

A. Uniform Fairness
Denote π∗ as an ideal offline optimal scheduler to OPT.

By “ideal”, we assume π∗ has all future channel information
when performing scheduling. Denote v∗1 , v

∗
2 , · · · , v∗N as the

outdated proportions for sources 1 to N under π∗. Recall that
each source node i has its own sample size Li and the channel
conditions vary for different sources. So we ask the following
question: Will v∗i ’s be different for different source nodes? The
answer to this question is given in the following lemma.

Lemma 1 There always exists an optimal offline scheduler π∗

such that v∗1 = v∗2 = · · · = v∗N .

A Proof Sketch The proof is based on contradiction. Suppose
v∗i ’s were not equal. Then one could always re-allocate the
transmission resources (RBs) from the source(s) with lower
v∗i ’s to those source(s) with higher v∗i ’s and the objective value
vmax will decrease.

Now we give a definition of uniformly fair schedulers.

Definition 1 A scheduler π is uniformly fair if v1 = v2 =
· · · = vN .

Lemma 1 says there exists an offline optimal scheduler π∗ that
is uniformly fair. Although an offline optimal scheduler cannot
be designed without knowledge of future channel information,
we will exploit this uniformly fair property as a guideline when
we design Aequitas.

B. Main Ideas
In this section we outline the main ideas of Aequitas.

Aequitas is a priority-based scheduler. Within a TTI, for
each iteration, Aequitas computes the priorities for all eligible
source nodes and selects the source node with the highest
priority for resource (RB) allocation.

The most important question to address is how to define
and calculate priority in scheduling. Aequitas addresses this
question with the following considerations:

• First, Aequitas aims to achieve uniform fairness, i.e.,
v1 = v2 = · · · = vN as t increases. Therefore, the source
nodes with higher outdated proportion in the past will
have higher priorities.

• Recall that Ai(t) will keep increasing until a sample is
received in its entirety. So Aequitas will try to make this
duration (i.e., τi(n)) as small as possible. Therefore, the
source node with an unfinished sample carried from the
previous TTI will have the highest priority.

• For a source i that already has Ai(t) ≥ di (i.e., either
already outdated or about to be outdated), it should be
assigned a higher priority.

• When transmitting a sample from a source, Aequitas tries
to use a high MCS to obtain a high date rate per RB.
Therefore, the source node that can use a higher MCS
(based on its channel quality) will have a higher priority.

C. Design Details
Within a TTI, for each iteration, Aequitas computes a

priority metric, denoted by wi, for each eligible source node

i. Then it selects the source node with the largest wi and then
chooses an MCS and allocates RBs to it. After each iteration,
the remaining available RBs will be fewer and Aequitas
recomputes wi’s for all remaining eligible source nodes for
the next iteration. To design wi, we need to introduce some
notations. When there is no ambiguity, we omit to include ”t”
in these notations in the rest of this section.
Notations Denote ui as a binary indicator for whether or
not a sample from source node i = 1, 2, · · · , N is being
transmitted in the TTI t (1 for yes and 0 for no). We have

ui = [
(B∑
b=1

xb
i (t)

)
> 0]. (17)

Recall that “[·]” is Iverson bracket, returning 1 if the inside
statement is true and 0 otherwise. Denote gb (b = 1, 2, · · ·B)
as a binary indicator for whether RB b is allocated to some
source node (1 for yes, 0 for no). We have

gb = [
(N∑
i=1

xb
i (t)

)
> 0]. (18)

Before the first iteration of Aequitas, we have xb
i (t) = 0 for

all i’s and b’s, so we have ui = 0 and gb = 0 for all i’s and
b’s initially.

Denote si as a binary indicator (1 for yes, 0 for no) for
whether source i has a sample that started its transmission in
previous TTI but still has an unfinished part in the current TTI
t. Denote LR as the number of bits in the remaining unfinished
part for the source with si = 1. Denote lmi as the minimum
required number of RBs to transmit a sample from source node
i under MCS m. We have:

lmi =

{
⌈ Li

cm ⌉ if si = 0,

⌈ LR

cm ⌉ if si = 1.
(19)

where “⌈·⌉” denotes the ceiling function. Denote nm
i as the

number of un-allocated RBs with qbi (t) ≥ m. Then

nm
i =

B∑
b=1

(
(1− gb) · [qbi (t) ≥ m]

)
. (20)

Clearly, if nm
i ≥ lmi , then a sample from source i can be

transmitted in full under MCS m.
Denote zi as a binary indicator for whether a sample from

source i can be transmitted under some MCSs in full in this
TTI (1 for yes, 0 for no). Clearly, if there is at least one m
making nm

i ≥ lmi , then zi = 1. We have

zi =
[
(

M∑
m=1

[nm
i ≥ lmi]) > 0

]
. (21)

In Aequitas, source nodes with zi = 1 have a higher priority
than those source nodes with zi = 0.

When a source node is chosen for transmission, we need to
select an MCS for it. Denote m∗

i as the optimal MCS level
that source i should select.

1) If zi = 1, Aequitas will selects an MCS as high as possible
(as long as it can be transmitted in full). That is,

m∗
i = max

m
{m : nm

i ≥ lmi }, if zi = 1. (22)

2) If zi = 0, Aequitas will select an MCS that can transmit the
maximum amount of information (in bits) with the remaining
RBs. That is,

m∗
i = argmax

m
{cm · nm

i }, if zi = 0. (23)

Denote λi as the amount of information that source i can
transmit under MCS m∗

i , i.e.,

λi = cm
∗
i · nm∗

i
i . (24)

Clearly, we have λi < Li if zi = 0.
Priority Metric Now we are ready to present the priority
metric wi. Based on the design ideas discussed in the last
section, wi depends on si, Ai(t), di, m∗

i , λi, and vi. We
propose the following construct for wi:

wi = f1(si) · f2
(
Ai(t), di

)
· f3(zi,m∗

i) · ei(t). (25)

Some discussions are in order.
• f1(si): This component is about si, which indicates

whether source node i has an unfinished sample from
the previous TTI. In our design, the source node with
si = 1 will have the highest priority. So we define:

f1(si) = (1− si) · C1 + 1 , (26)

where C1 is a constant and C1 ≫ 1.
• f2

(
Ai(t), di

)
: This component is concerned with the

current AoI Ai(t) and the AoI threshold di. Those
source nodes with Ai(t) ≥ di should have a greater
f2
(
Ai(t), di

)
than those source nodes with Ai(t) < di.

When Ai(t) < di, the closer the Ai(t) is to its di, the
higher the f2

(
Ai(t), di

)
should be. When Ai(t) ≥ di,

from the objective’s perspective, it doesn’t matter how
much Ai(t) is greater than di. So we define:

f2
(
Ai(t), di

)
=

{
Ai(t)
di

if Ai(t) < di,

C2 if Ai(t) ≥ di,
(27)

where C2 is a constant and C2 > 1.
• f3(zi,m

∗
i): This component is about zi, whether a sample

from source i can be transmitted in full, and its MCS level
m∗

i . Since we prefer those samples that can be transmitted
in full, we will make those sources with zi = 1 have a
higher priority than those sources with zi = 0. Among
the source nodes with zi = 1, we prioritize those with
higher date rates per RB, i.e., cm

∗
i . Among the nodes with

zi = 0, we prioritize those with a larger proportion that
can be transmitted in this TTI, i.e., λi/Li. So we define:

f3(zi,m
∗
i) =

{
cm

∗
i if zi = 1,

c1

C3
· λi

Li
if zi = 0,

(28)

where C3 is constant and C3 > 1.

Algorithm 2 Aequitas

Input: Ai(t), di, ei(t) and si for all i’s; qbi (t) for all i’s and
b′s. Parameters: C1, C2, C3, and γ.

Output: xb
i (t)’s and ymi (t)’s.

1: Set xb
i (t) = 0, ymi (t) = 0, ui = 0 and gb = 0 for all i’s,

b’s and m’s.
2: For all i’s with ui = 0, compute zi by (21), m∗

i by (22)
or (23), and wi by (25).

3: Set k = argmaxi wi.
4: Set uk = 1, m = m∗

k, and ymk (t) = 1.
5: if zk = 1 then
6: Choose any nm

k different b’s with gb = 0 and qbk(t) ≥
m, and set xb

k(t) = 1 and gb = 1 for these b’s.
7: go to line 2
8: else
9: Set xb

k(t) = 1 for all b’s with gb = 0.
10: end if
11: return xb

i (t)’s and ymi (t)’s.

• ei(t): This component serves as an equalizer to ensure
v1 = v2 = · · · = vN as t increases. Denote v̄i(t) as the
outdated proportion for source i till TTI t, i.e.,

v̄i(t) =
1

t

t∑
τ=1

[Ai(τ) > di]. (29)

Clearly, vi = limt→∞ v̄i(t). We define ei(t) as:

ei(t) =
(
1−γ+γ· Nv̄i(t− 1)∑N

j=1 v̄j(t− 1)

)
·ei(t−1), for t ≥ 2,

(30)
and ei(1) = 1. Here γ is a constant and 0 < γ ≪ 1.
We can see when v̄i(t − 1) is higher than the average
outdated proportion of other sources, it will have a high
priority ei(t) in the next TTI, and vice versa.

For parameter settings, since we want to ensure the un-
finished sample from the previous TTI will have the highest
priority, the component f1(si) should dominate over other
component when si = 1. To ensure this is the case, we should
let C1 ≫ C2 and C1 ≫ C3. After these two conditions are
satisfied, the settings of C2 and C3 are rather open and do not
affect the performance of Aequitas very much.

The complete Aequitas algorithm is summarized (in pseu-
docode) in Algorithm 2. It can be shown that the time
complexity of Algorithm 2 in each TTI is O(B2NM).
Real-Time Implementation Although Aequitas’ time com-
plexity is polynomial, as we will see in Section V, its average
running time cannot meet 5G’s timing requirement. We pro-
pose to exploit parallel computation to speed up Aequitas’
execution time. Recall that the computation of NM different
nm
i ’s (when computing wi’s in line 2, Algorithm 2) is the most

time-costing task in Aequitas. We observe that computations
of these NM different nm

i ’s are independent from each other.
In our implementation, we employ a commercial off-the-shelf
(COTS) NVIDIA Tesla V100 GPU and CUDA programming
platform to computer NM different nm

i ’s in parallel.

Table I: Parameters for different types of source nodes.

Type di (TTIs) Li (bits) Type di (TTIs) Li (bits)
1 3 6400 6 5 9800
2 5 5400 7 9 4500
3 4 7800 8 4 3900
4 3 4200 9 6 6600
5 6 5600 10 3 5800

V. PERFORMANCE EVALUATION

In this section we conduct experiments and evaluate the
performance of our Aequitas implementation.

A. Experiment Setup

We implement Aequitas on an NVIDIA DGX Station with
an Intel Xeon E5-2698 v4 CPU (2.20 GHz) and an NVIDIA
Tesla V100 GPU (32 GB memory). We use Visual Studio 2019
and CUDA 10.2 for programming.

We consider a network with B = 50∼100 RBs and N =
50∼100 source nodes. We assume 10 different types of source
nodes, each with the same AoI threshold di and sample size
Li. We assume small sample size, i.e., Li < 10 Kbits, and
a stringent AoI threshold, i.e., di < 10 TTIs. In this paper,
to help readers reproduce the same results, we list a group of
random-generated parameters in Table I for each type.

For each source node, we assume a Rician fading channel
with factor K = 1 and randomly generate an average SNR
between 10 and 20dB. We assume there is no correlation in
time and frequency, i.e., for each TTI, we generate channel
conditions independently and so as for each RB.

In Algorithm 1, we set α = 10, β = 0.01, and T = 1, 000.
In Algorithm 2, we set C1 = 100, 000, C2 = 10, C3 = 10,
γ = 0.001, and run the algorithm for 100,000 TTIs.

B. A Case Study

We first consider a network with N = 100 source nodes
(10 nodes for each type in Table I) and B = 100 RBs. Define

v̄max(t) = max{v̄1(t), v̄1(t), · · · , v̄N (t)}. (31)

Clearly, we have limt→∞ v̄max(t) = vmax.
Fig. 3a shows the evolution of v̄i(t) for all 100 nodes under

Aequitas over 100,000 TTIs. As we can see, after a warm-up
period, all 100 v̄i(t)’s converge roughly to the same value.
This shows that the uniform fairness property for an offline
optimal scheduler is also achieved by Aequitas.

Fig. 3b shows the evolution of v̄max(t) under Aequitas over
100,000 TTIs. The lower bound found by Algorithm 1 is also
shown in the figure. We can see that v̄max(t) by Aequitas
is close to the lower bound. When t = 100, 000, we have
v̄max(100, 000) = 0.422 while the lower bound is 0.367.

Fig. 3c shows the running time of Aequitas with and
without parallel implementation over 100,000 TTIs. Under
parallel implementation, the average running time of Aequitas
is 0.31 ms, which is under 1 ms (as required by 5G NR);
while the average running time is 23.48 ms when parallel
implementation is not used.

(a) Evolution of v̄i(t) for all 100 nodes.

0 1 2 3 4 5 6 7 8 9 10

 t (TTI) ×10
4

0

0.2

0.4

0.6

0.8

1

v̄
m
a
x
(t
) Aequitas

 Lower Bound

(b) Evolution of v̄max(t).

1 2 3 4 5 6 7 8 9 10

t (TTI)
×10

4

10
-2

10
-1

10
0

10
1

10
2

R
u
n
n
in

g
 t
im

e
 (

m
s
)

 Aequitas with Parallel Implementation

 Aequitas without Parallel Implementation

1 ms

(c) Running time of Aequitas with and without
parallel implementation

Figure 3: Results for a case study with N = 100, B = 100.

50 60 70 80 90 100

N

0

0.2

0.4

0.6

0.8

1

v
m
a
x

 Aequitas

 Lower Bound

(a) vmax

50 60 70 80 90 100

N

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 r

u
n
n
in

g
 t
im

e
 (

m
s
)

 Aequitas

1 ms

(b) Average running time

Figure 4: Aequitas under varying N when B = 100

C. Varying Numbers of Source Nodes

In this section, we investigate the performance of Aequitas
under varying N . We set B = 100 RBs.

Fig. 4a shows the objective vmax under Aequitas for N =
50, 60, 70, 80, 90 and 100. Here vmax refers to v̄max(100, 000).
The lower bound found by Algorithm 1 is also shown in the
figure. As we can see, when N increases vmax under Aequitas
also increases, which is intuitive. For all settings of N , vmax

under Aequitas is close to the lower bound.
Fig. 4b shows the average running time of Aequitas (with

parallel implementation) for varying N ’s. As we can see, the
average running time is always under 1 ms and remains nearly
flat when N = 50 to 100. Specifically, when N = 50 the
average running time is 0.283 ms while when N = 100 it
is 0.310 ms. This is because the number of source nodes will
not affect running time much as long as we have enough GPU
cores to accommodate them.

VI. CONCLUSIONS

In this paper, we investigated online 5G scheduling to
minimize outdated proportion of information among a group
of source nodes. We first developed a computation procedure
to find a lower bound for the objective, which can be used as a
performance benchmark. Then we derived a uniform fairness
property associated with an offline optimal scheduler, which
indicates that each source may have the same proportion of
outdated information when time becomes large. Using this
property, we developed Aequitas—an online 5G scheduler
that performs RB allocation and MCS selection in each
TTI. By exploiting the intrinsic parallelism in Aequitas, we
implemented it on a GPU platform. Through extensive exper-
imental study, we found that Aequitas can achieve excellent
performance in finding objective value while meeting the 5G
timing requirement.

ACKNOWLEDGMENTS

This research was supported in part by ONR under MURI
Grant N00014-19-1-2621, Virginia Commonwealth Cyber Ini-
tiative (CCI), and Virginia Tech Institute for Critical Technol-
ogy and Applied Science.

REFERENCES

[1] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing Age of
Information in Vehicular Networks,” in Proc. IEEE SECON, 2011.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-Time Status: How Often
Should One Update?” in Proc. IEEE INFOCOM, 2012.

[3] Y. Sun, “A Collection of Recent Papers on the Age of Information,”
available at http://www.auburn.edu/%7eyzs0078 [Online; accessed on
2022-7-15].

[4] R. Talak, S. Karaman, and E. Modiano, “Minimizing Age-of-Information
in Multi-Hop Wireless Networks,” in Proc. Allerton Conference, 2017.

[5] C. Li, S. Li, and Y.T. Hou, “A General Model for Minimizing Age of
Information at Network Edge,” in Proc. IEEE INFOCOM, 2019.

[6] J.P. Champati, R.R. Avula, T.J. Oechtering, and J. Gross, “On the
Minimum Achievable Age of Information for General Service-Time
Distributions,” in Proc. IEEE INFOCOM, 2020.

[7] Q. Liu, C. Li, Y.T. Hou, W. Lou, and S. Kompella, “Aion: A Bandwidth
Optimized Scheduler with AoI Guarantee,” in Proc. IEEE INFOCOM,
2021.

[8] L. Corneo, C. Rohner, and P. Gunningberg, “Age of Information-Aware
Scheduling for Timely and Scalable Internet of Things Applications,” in
Proc. IEEE INFOCOM, 2019.

[9] Z. Qian, F. Wu, J. Pan, K. Srinivasan, and N.B. Shroff, “Minimizing
Age of Information in Multi-channel Time-sensitive Information Update
Systems,” in Proc. IEEE INFOCOM, 2020.

[10] J. Lou, X. Yuan, S. Kompella, and N. Tzeng, “AoI and Throughput
Tradeoffs in Routing-aware Multi-hop Wireless Networks,” in Proc.
IEEE INFOCOM, 2020.

[11] A.M. Bedewy, Y. Sun, R. Singh, and N.B. Shroff, “Optimizing In-
formation Freshness Using Low-Power Status Updates via Sleep-Wake
Scheduling,” in Proc. ACM MobiHoc, 2020.

[12] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “Asymptot-
ically Optimal Scheduling Policy for Minimizing the Age of Informa-
tion,” in Proc. IEEE ISIT, 2020.

[13] C. Li, Q. Liu, S. Li, Y. Chen, Y.T. Hou, and W. Lou, “On Scheduling
with AoI Violation Tolerance,” in Proc. IEEE INFOCOM, 2021.

[14] Z. Jiang, “Analyzing Age of Information in Multiaccess Networks by
Fluid Limits,” in Proc. IEEE INFOCOM, 2021.

[15] X. Chen, X. Liao, and S.S. Bidokhti, “Real-time Sampling and Estima-
tion on Random Access Channels: Age of Information and Beyond,” in
Proc. IEEE INFOCOM, 2021.

[16] 3GPP TS 38.211 version 16.0.0, “NR; Physical channels and modula-
tion,” available at https://portal.3gpp.org.

[17] 3GPP TS 38.214 version 16.0.0, “NR; Physical layer procedures for
data,” available at https://portal.3gpp.org.

[18] A.L. Stolyar, “On the Asymptotic Optimality of the Gradient Scheduling
Algorithm for Multiuser Throughput Allocation,” Operations Research,
vol. 53, issue 1, 2005.

[19] IBM ILOG CPLEX Optimizer, available at https://www.ibm.com/ana
lytics/cplex-optimizer [Online; accessed on 2022-7-15].

