
On Scheduling with AoI Violation Tolerance
Chengzhang Li Qingyu Liu Shaoran Li Yongce Chen Y. Thomas Hou Wenjing Lou

Virginia Tech, Blacksburg, VA, USA

Abstract—We study an Age of Information (AoI) scheduling
problem where AoI for each source at the base station (BS)
can tolerate occasional violations, which we define as a violation
tolerance constraint. The problem is to determine whether a set of
users with given AoI deadlines, tolerance rates, and packet loss
rates (due to each source’s channel condition) is schedulable, and
if so find a feasible scheduler. We study two cases: (i) the stable
tolerant case where the tolerance rate is higher than the packet
loss rate for all sources; (ii) the unstable tolerant case where the
tolerance rate is lower than the packet loss rate for at least one
source. For stable tolerant case, we design an algorithm called
stable tolerant scheduler (STS), which can find a feasible scheduler
for any network when system load is no greater than ln 2. For
unstable tolerance case, we develop unstable tolerant scheduler
(UTS) and identify a schedulability condition for it. Through
extensive simulations, we show that STS and UTS match our
theoretical results.

I. INTRODUCTION

Age of Information (AoI) is a novel application-layer metric
for latency that was initially conceived by Kaul et al. [1],
[2]. AoI is defined as the elapsed time for a sample (stored
at a particular location, e.g., edge or cloud) between current
time (now) and the time when the sample was first generated
(collected) at its source. AoI measures the freshness of the
sample from the time when it was initially generated. It is a
latency metric at the application layer (in contrast to traditional
network/link layer latency).

Since its inception, there has been active research on AoI
(see an online bibliography in [3]), which includes a wide
range of problems. An important class of problems that
has attracted much attention is how to design schedulers to
minimize AoI [4]–[29]. However, for many applications, we
may not care much about AoI minimization (average or peak-
wise). But rather, we may be more interested in whether or not
the scheduler can meet their AoI requirements (or deadlines),
which may vary widely across different source nodes. Further,
for many applications, such a deadline requirement doesn’t
need to be hard (deterministic guarantee), as occasional viola-
tions of deadlines are usually not fatal and can be tolerated, as
long as the long term violation rate is kept under a threshold.
Unfortunately, this class of problems has not been studied in
the literature, partly due to the level of difficulties involved in
the analysis.

In this paper, we investigate this problem by considering
a data collection network, where each source node collects
information and forwards it to a base station (BS) through a
shared wireless channel. At the BS, we assume there is an AoI
deadline for information from each source and a tolerance rate
for violating this deadline. Further, we assume there is a packet
loss rate on the wireless link between each source and the BS.

Denote the vectors (for all source nodes) of AoI thresholds,
tolerance rates and packet loss rates as d, ε and p. We are
interested in addressing the following two questions: (i) For
a given triple (d, ε,p), does there exist a feasible scheduler?
(ii) If a feasible scheduler exists, then find it.

The main contributions of this paper are the following:
• We define a system load metric, denoted by l(d, ε,p), that

seamlessly fuses AoI requirement d, channel condition p
and violation tolerance ε together. We show that (d, ε,p)
is schedulable only if l(d, ε,p) ≤ 1.

• We address the scheduling problem by exploring the
relationship between ε and p. In the case where εi ≥ pi
for all i’s, which we call stable tolerant case, we present
stable tolerant scheduler (STS), which can find a feasible
scheduler as long as l(d, ε,p) ≤ ln 2.

• STS is based on three key results. (i) We introduce the
notion of Almost Uniform Scheduler (AUS), which fol-
lows a uniform or nearly uniform transmission schedule
for each source. AUS serves as a key construct in our
scheduler design throughout this paper. We also present
a necessary and sufficient condition for an AUS to be
feasible. (ii) We consider a special case of (d, ε,p) with
step-down rate vector, and present a procedure that can
construct a feasible AUS for any (d, ε,p) with a step-
down rate vector as long as l(d, ε,p) ≤ 1. (iii) For
a general (d, ε,p) that does not have a step-down rate
vector, we present a dynamic programming (DP) solution
to map it to a step-down rate vector, for which we can
construct a feasible AUS.

• In the case where εi < pi for some i’s, which we
call unstable tolerant case, we follow the same design
roadmap (with modifications along the way) of STS
and present a low-complexity algorithm called Unstable
Tolerant Scheduler (UTS). We also give a sufficient
condition for UTS to find a feasible scheduler for unstable
tolerant (d, ε,p).

II. SYSTEM MODEL

We consider a wireless network for data collection. We
assume N source nodes and one base station (BS). Each source
collects information from the environment and forwards it to
the BS through a shared uplink wireless channel (see Fig. 1).
Assume time is equally slotted and each source takes a new
sample at the beginning of each time slot. Due to potential
interference, at most one sample can be transmitted within
one time slot. For each transmission, the source will forward
its freshest (latest generated) sample to the BS. A scheduler
(denoted by π) is needed to choose one source for transmission

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications
IE

EE
 IN

FO
C

O
M

 2
02

1
- I

EE
E

C
on

fe
re

nc
e

on
 C

om
pu

te
r C

om
m

un
ic

at
io

ns
 |

97
8-

1-
66

54
-0

32
5-

2/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IN

FO
C

O
M

42
98

1.
20

21
.9

48
86

85

978-1-6654-0325-2/21/$31.00 ©2021 IEEE
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

IoT source nodes

Wireless channel

Base station (BS)

Figure 1: System model: N source nodes collect information
and forward it to the BS.

at the beginning of each time slot. Denote πi(t) ∈ {0, 1} as
the scheduling decision for source i (i = 1, 2, · · · , N) at time
t (t = 0, 1, 2, · · ·), i.e.,

πi(t) =

{
1, if source i is scheduled at time t,
0, otherwise.

(1)

Clearly, the following must hold for any scheduler π:

N∑
i=1

πi(t) ≤ 1, t = 0, 1, 2, · · · . (2)

The success (or failure) for transmitting the sample depends
on the wireless channel condition. Denote qi(t) as an indicator
function of the channel for node i at t, i.e., qi(t) = 1 if the
channel is under good condition and the transmission from
source i will be successful, and 0 otherwise. Denote pi as
the probability of qi(t) = 0, i.e., P{qi(t) = 0} = pi. Then
P{qi(t) = 1} = 1− pi. Note that pi is location dependent (on
source node i). Also, we assume pi is time-invariant.

The BS only stores the freshest sample it has received from
each source. Denote Ui(t) as the generation time of the sample
stored at the BS from source i at time t. Then the AoI of
source i (at the BS) at time t, denoted as Ai(t), is defined as
the elapsed time between the current time t and the sample
generation time Ui(t), i.e.,

Ai(t) = t− Ui(t), t = 0, 1, 2, · · · . (3)

If the source i is not scheduled for transmission at time t (i.e.,
πi(t) = 0), by definition of AoI, at time (t + 1) we have
Ai(t+1) = Ai(t)+1. We assume then the generation time of
a new sample occurs at the beginning of each time slot t. Then
if source i is scheduled for transmission at time t (i.e., πi(t) =
1), then: (i) if the sample is successfully received by the BS
(i.e., qi(t) = 1), then at time (t+1), we have Ui(t+1) = t, and
Ai(t+1) = 1; (ii) if the sample is not received (i.e., qi(t) = 0),
then at time (t+1) we have Ai(t+1) = Ai(t)+1. Combining
the two cases, we have:

Ai(t+ 1) =

{
1, if πi(t) · qi(t) = 1,

Ai(t) + 1, otherwise.
(4)

III. PROBLEM STATEMENT

In this paper we assume there is an AoI threshold di (di
is a positive integer) and a tolerance rate εi ∈ [0, 1) for
each source i. Due to the difference in types of application,
di and εi may vary among different sources. Our goal is to
design a scheduler such that for each source i the fraction of
time slots when its AoI exceeds its threshold di is no greater
than its tolerance rate εi. More formally, we say a scheduler
π is feasible if it satisfies the following violation tolerance
constraint:

lim
T→∞

1

T

T∑
t=1

[Ai(t) > di] ≤ εi, i = 1, 2, · · · , N, (5)

where “[·]” is Iverson bracket, returning 1 if the inside state-
ment is true and 0 otherwise [30].

Denote d = [d1, d2, · · · , dN] as the vector of AoI thresholds
for all N sources, ε = [ε1, ε2, · · · , εN] as the vector of all N
tolerance rates, and p = [p1, p2, · · · , pN] as the vector of all
N packet loss probabilities. We say an ordered triple (d, ε,p)
is schedulable if there exists at least one feasible scheduler for
it. The problem we want to study in this paper is to determine
whether or not a given ordered triple (d, ε,p) is schedulable;
and if so, how to find a feasible scheduler.

It turns out that our answers to the above two questions
heavily depend on the relationship between ε and p. For now,
let’s define two cases: (i) if εi ≥ pi for all i = 1, 2, · · · , N ,
then we say (d, ε,p) is stable tolerant; (ii) if there exists
at least some i = 1, 2, · · · , N such that εi < pi, the we
say (d, ε,p) is unstable tolerant. Note that the two cases
are complimentary in the entire space for (ε,p). Thus, it is
sufficient to examine these two cases.

IV. SYSTEM LOAD

Recall that one of our goals is to determine schedulability
of an ordered triple (d, ε,p). In this section we derive a
necessary condition for (d, ε,p) to be schedulable. We define
a concept called system load, denoted by l(d, ε,p), and show
that (d, ε,p) is schedulable only if l(d, ε,p) ≤ 1.

Under a scheduler π, we define the average scheduling rate
ri for each source i as

ri = lim
T→∞

1

T

T∑
t=1

πi(t), (6)

which represents the fraction of time slots in which source i
is scheduled for transmission. Clearly, based on (2), we have

N∑
i=1

ri ≤ 1. (7)

Since the success probability for each transmission from
source i is (1 − pi), the fraction of time slots in which its
sample is successfully received by the BS is ri(1− pi).

Recall a scheduler π is feasible if it can ensure Ai(t) ≤ di
for at least a fraction of (1 − εi) of time slots. Note that
when a new update arrives at the BS, it will bring the AoI
(for that source) at the BS immediately down to 1. This

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

effectively ensures that the AoI for that source will not exceed
its threshold for up to di time slots. So for a feasible scheduler,
the fraction of the time slots when a sample from source i is
successfully received by the BS must be no less than 1−εi

di
.

That is,

ri(1− pi) ≥
1− εi
di

, i = 1, 2, · · · , N, (8)

which is equivalent to

ri ≥
1− εi

(1− pi)di
, i = 1, 2, · · · , N. (9)

Denote the RHS of (9) as rlb
i , which is the lower bound of ri.

We have
rlb
i =

1− εi
(1− pi)di

. (10)

Clearly, under a feasible scheduler we must have ri ≥ rlb
i for

each i. Considering (7), for a feasible scheduler we must have

N∑
i=1

rlb
i ≤ 1. (11)

We define the sum of rlb
i ’s as system load w.r.t. (d, ε,p), which

is written as

l(d, ε,p) =
N∑
i=1

rlb
i =

N∑
i=1

1− εi
(1− pi)di

. (12)

The following lemma shows a necessary condition for (d, ε,p)
to be schedulable.

Lemma 1 An ordered triple (d, ε,p) is schedulable only if
l(d, ε,p) ≤ 1.

The lemma follows directly from the discussions in this
section.

V. THE STABLE TOLERANT CASE

In this section we will study scheduler design for the stable
tolerance case, i.e., the case when εi ≥ pi for all i =
1, 2, · · · , N . First, we introduce Almost Uniform Scheduler
(AUS) and offer a necessary and sufficient condition for an
AUS to be feasible for (d, ε,p). Then we consider a special
case of (d, ε,p)’s and show how to construct an AUS for this
special case. Finally we extend the same procedure from the
special case to the general case of (d, ε,p).

A. Almost Uniform Scheduler

We first define what we call a “cyclic” scheduler.

Definition 1 We say a scheduler π is cyclic if there exists a cy-
cle length c such that πi(t) = πi(t+c) for all i = 1, 2, · · · , N
and t ≥ 0.

In other words, a scheduler is cyclic if its scheduling
decision over a frame of length c time slots repeats itself over
time. Since a cyclic scheduler is most easy to understand and
implementation friendly, we will focus our attention on this
class of schedulers.

Denote τki as the time slot when the k-th sample from source
i is scheduled for transmission under scheduler π. Clearly we
have πi(τ

k
i) = 1 for each k = 1, 2, · · · . Denote T ki as the

time interval (in number of time slots) between the k-th and
the (k + 1)-th transmission for source i. Then we have:

T ki = τk+1
i − τki . (13)

Clearly, when there is only one transmission for source i
within a cycle c, we have T ki = c. When there are more than
one transmissions within c, we have T ki < c.

Definition 2 A cyclic scheduler π is an Almost Uniform
Scheduler (AUS) if for each source i, there exists an integer
bi such that T ki is either bi or (bi + 1) for any k ≥ 1.

By definition, if a scheduler π is an AUS, then the intervals
between two consecutive transmissions of a source do not
differ by more than 1 time slot. As an example, consider three
sources A, B, and C. Denote “()” as a scheduling decision for
one cycle. Then for scheduler (ABACB) (with c = 5), we
have T 1

A = 2, T 2
A = 3, · · · , T 1

B = 3, T 2
B = 2, · · · , T 1

C = 5.
We have bA = 2, bB = 2 and bC = 5 and this scheduler is
AUS. In contrast, for scheduler (AABACB) (with c = 6),
we have T 1

A = 1, T 2
A = 2, T 3

A = 3, · · · , T 1
B = 3, T 2

B = 3,
· · · , T 1

C = 6. Since T 1
A = 1 and T 3

A = 3, we cannot find a bA
per AUS definition. So this scheduler is not AUS.

The following theorem shows that if a scheduler π is AUS,
then there exists a necessary and sufficient condition for it to
be feasible for (d, ε,p).

Theorem 1 In the stable tolerance case, an AUS π is feasible
for (d, ε,p) if and only if ri ≥ rlb

i for each i = 1, 2, · · · , N .

Proof The proof for the “only if” part follows directly from
Lemma 1. So our proof focuses on the “if” part, i.e., an AUS
π is feasible if ri ≥ rlb

i for each i = 1, 2, · · · , N . In other
words, we need to show that if ri ≥ rlb

i , then (5) will be
satisfied for source i.

By Definition 2, under AUS we have an integer bi such that
the interval length between any two consecutive transmissions
of source i is either bi or (bi + 1). We consider two cases.
• When bi < di, we have bi + 1 ≤ di. Therefore, under

AUS for any time slot t, within interval [t − di, t − 1]
there will be at least one transmission for source i. Since
the success probability for this transmission is (1 − pi),
for any t we have P{Ai(t) ≤ di} ≥ 1 − pi. Therefore,
we have

lim
T→∞

1

T

T∑
t=1

[Ai(t) ≤ di] ≥ 1− pi,

which is equivalent to

lim
T→∞

1

T

T∑
t=1

[Ai(t) > di] ≤ pi.

Since εi ≥ pi (in the stable tolerance case), we have

lim
T→∞

1

T

T∑
t=1

[Ai(t) > di] ≤ εi.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

• When bi ≥ di, under AUS for any time slot t, within
interval [t, t + di − 1] there must be at most one trans-
mission for source i. Then for each t with πi(t) = 1, we
have πi(t + 1) = πi(t + 2) = · · · = πi(t + di − 1) = 0,
and P{Ai(t + 1) ≤ di} = P{Ai(t + 2) ≤ di} = · · · =
P{Ai(t+di) ≤ di} = (1−pi). Therefore, each scheduled
transmission for source i will benefit the following di
time slots, i.e., make the probability that the AoI is no
greater than the threshold (1 − pi) on the following di
time slots. Considering the scheduling rate ri, for a large
time window T , the number of time slots when the AoI
is no greater than the threshold is Tri(1− pi)di, i.e,

lim
T→∞

T∑
t=1

[Ai(t) ≤ di] = Tri(1− pi)di.

Dividing both sides by T , we have

lim
T→∞

1

T

T∑
t=1

[Ai(t) ≤ di] = ri(1− pi)di,

which is equivalent to

lim
T→∞

1

T

T∑
t=1

[Ai(t) > di] = 1− ri(1− pi)di.

Since ri ≥ rlb
i = 1−εi

(1−pi)di , we have

lim
T→∞

1

T

T∑
t=1

[Ai(t) > di] ≤ 1−(1−pi)di·
1− εi

(1− pi)di
= εi.

Combining both cases, we have completed the proof for the
“if” part of the theorem. This completes our proof.

B. Finding AUS for a Special Case of (d, ε,p)

In this section we study a special case of (d, ε,p)’s,
for which we can construct an AUS when the system load
l(d, ε,p) is no greater than 1. We first introduce a concept
called step-down rate vector. Denote rlb as the lower bound
rate vector, i.e., rlb = [rlb

1 , r
lb
2 , · · · , rlb

N], where rlb
i is given

in (10) for i = 1, 2, · · · , N . Without loss of generality,
we sort the elements in rlb in non-increasing order, i.e.,
rlb
1 ≥ rlb

2 ≥ · · · ≥ rlb
N .

Definition 3 We say rlb is a step-down rate vector if
rlb
i /r

lb
i+1 ∈ N∗ for i = 1, 2, · · · , N − 1.

In other words, in a step-down rate vector rlb, the radio of an
element over its succeeding element is a positive integer. For
example, rlb = [1/2, 1/6, 1/12, 1/12, 1/24] is a step-down
vector.

Now we show how to construct an AUS that is feasible for
a given (d, ε,p) with a step-down rate vector rlb. We use an
example to illustrate the main ideas. The complete pseudocode
is given in Algorithm 1.

Example 1. Consider seven sources A, B, C, D, E, F and G
with (d, ε,p) = ([2, 4, 5, 15, 15, 16, 16], [0.4, 0.4, 0.25, 0.25,
0.25, 0.2, 0.2], [0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15]). By

(10), we have rlb = [6
17 ,

3
17 ,

3
17 ,

1
17 ,

1
17 ,

1
17 ,

1
17], which is a

step-down rate vector. Further, l(d, ε,p) = 16
17 < 1.

By Theorem 1, an AUS is feasible if ri ≥ rlb
i for each i.

Since l(d, ε,p) < 1, we can set ri = rlb
i /l(d, ε,p) for each i,

which still guarantees the AUS is feasible. We have rA = 6
16 ,

rB = 3
16 , rC = 3

16 , rD = 1
16 , rE = 1

16 , rF = 1
16 , and

rG = 1
16 . Since the smallest rate among the ri’s is 1/16, we

set the cycle length of the AUS to cAUS = 16. Denote Ni
as the number of scheduled transmission for source i within
one cycle. Since Ni = ri · cAUS, we have NA = 6, NB = 3,
NC = 3, ND = 1, NE = 1, NF = 1, and NG = 1.

To construct an AUS, we first consider a special case, which
we call Exact Uniform Scheduler (EUS). We say a scheduler
an EUS if for each source i, the interval between any two
adjacent transmissions is exactly bi.

Now we continue with our example. Since NA = 6, we
propose to first construct an EUS with c = d c

AUS

NA
e · NA =

3 · 6 = 18. This EUS has 18 − 16 = 2 more time slots than
our AUS. We will take care of these 2 empty slots in the last
step.

First, we lay out an unassigned EUS cycle with c = 18.
Under each slot in the cycle, we label its position with an
index number.
π (� � � � � � � � � � � � � � � � � �)
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Consider source A. Since NA = 6, in the EUS we have
bA = 18/6 = 3. We allocate the first empty time slot to A,
along with every 3 time slots after it.

π (A � � A � � A � � A � � A � � A � �)
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Then we consider the second source B. Since NB = 3, in
the EUS we have bB = 18/3 = 6. Among all the empty time
slots, the smallest elapsed time slots following a transmission
of A are: t = 2, 5, 8, 11, 14, 17. We allocate the first one among
these possibilities, i.e., t = 2, to source B, along with every
bB = 6 slots after it.

π (A B � A � � A B � A � � A B � A � �)
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Then we consider source C. Since NC = 3, in the EUS
we have bC = 18/3 = 6. Among all the empty time slots,
the smallest elapsed time after a transmission of A is 1 time
slot: i.e., t = 5, 11, 17 have this smallest elapsed time. Among
time slots t = 5, 11, 17, the smallest elapsed time from a
transmission of B is 3 time slot: i.e., t = 5, 11, 17. We allocate
the first one among these possibilities, i.e., t = 5, to source
C, along with every bC = 6 slots after it.

π (A B � A C � A B � A C � A B � A C �)
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Then we consider source D. Recall ND = 1. Among all the
empty time slots, the smallest elapsed time from a transmission
of A is 2 time slot: i.e., t = 3, 6, 9, 12, 15, 18. Among time
slots t = 3, 6, 9, 12, 15, 18, the smallest elapsed time from a
transmission of B is 1 time slot: i.e., t = 3, 9, 15. Among
time slots t = 3, 9, 15, the smallest elapsed time from a

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 AUS Construction

Input: A step-down rate vector rlb with l(d, ε,p) ≤ 1.
Output: A feasible AUS.

1: Set ri = rlb
i /l(d, ε,p) for each 1 ≤ i ≤ N . Set cAUS =

1/rN , and Ni = ri · cAUS for each 1 ≤ i ≤ N .
2: Construct an unassigned EUS cycle with c = d c

AUS

N1
e ·N1.

3: Allocate the first empty slot to source 1, along with every
c/N1 slots after it.

4: for i = 2, 3, · · · , N do
5: Let S0 be the set of empty time slots.
6: for j = 1, 2, · · · , i− 1 do
7: Let Sj be the subset of Sj−1 containing time slots

corresponding to the smallest elapsed time after a
transmission of source j in the cycle.

8: end for
9: Allocate the first time slot in Si−1 to source i, along

with every c/N1 slots after it.
10: end for
11: Remove the (c− cAUS) unassigned time slots in the EUS

cycle and output the resulting schedule.

transmission of C is 4 time slot: i.e., t = 3, 9, 15. Among
these three possibilities, we allocate the first one, i.e., t = 3,
to source D.
π (A B D A C � A B � A C � A B � A C �)
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Following the same token, we allocate time slots t = 9 to
E, t = 15 to F , and t = 6 to G, respectively.

π (A B D A C G A B E A C � A B F A C �)
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

It is easy to understand that the above scheduler is an EUS.
In the final step, we remove the two extra (empty) slots in the
EUS and we have:
π (A B D A C G A B E A C A B F A C)
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Readers can easily verify that the final scheduler is AUS
based on Definition 2.

Algorithm 1 present a pseudocode based on the ideas in
Example 1.

Lemma 2 For any stable tolerant (d, ε,p) with a step-down
rate vector rlb and l(d, ε,p) ≤ 1, the scheduler constructed
by Algorithm 1 is an AUS.

Due to space limit, we give a proof sketch of Lemma 2.

A Proof Sketch Denote π as the scheduler constructed by
Algorithm 1. We will prove that under π, for source i, there
exists a bi such that T ki is either bi or (bi + 1). After the last
allocation in Algorithm 1 (to source N), we have an EUS with
(c− cAUS) empty slots. By design, it can be shown that there
are no two consecutive empty slots in this EUS. Further, based
on steps 7 and 9 in Algorithm 1, it can be shown that for any
source i, there exists an xi such that within an interval between

any two consecutive transmissions of source i, the number of
empty slots is either xi or (xi + 1). So after removing the
(c− cAUS) unassigned time slots in the EUS, the scheduler is
an AUS.

The following theorem says that the scheduler by Algo-
rithm 1 is not only AUS, but also feasible for the given
(d, ε,p).

Theorem 2 For any stable tolerant (d, ε,p) with a step-down
rate vector rlb and l(d, ε,p) ≤ 1, the scheduler constructed
by Algorithm 1 is feasible for (d, ε,p).

Proof Denote π as the scheduler constructed by Algorithm 1.
By Lemma 2, π is an AUS. Note that in Algorithm 1, we
set ri = rlb

i /l(d, ε,p) for π. Since l(d, ε,p) ≤ 1, we have
ri ≥ rlb

i . Then by Theorem 1, π is feasible for (d, ε,p).

Complexity We now analyze the time complexity of Algo-
rithm 1. For each iteration of step 7 in Algorithm 1, we need
to visit all unassigned time slots in the EUS, which has a
complexity of O(c). Since there are O(N2) such iterations
in Steps 4–9 in Algorithm 1, the time complexity of all
iterations is O(N2c). Considering c < 2cAUS ≤ 2/rlb

N , so
O(c) = O(1/rlb

N) = O(dmax) where dmax is the largest
element in d. Here we assume both εi and pi are smaller
than 0.5. Therefore, the total complexity of Algorithm 1 is
O(N2c) = O(N2dmax).

C. Finding AUS for General Case of (d, ε,p)

In this section, we consider the general case where rlb may
not be a step-down rate vector. Recall that by Theorem 1, an
AUS is feasible if ri ≥ rlb

i for each i. So if we could find a
step-down rate vector r̂ = [r̂1, r̂2, · · · , r̂N] with

∑N
i=1 r̂i ≤ 1

and r̂i ≥ rlb
i for each i, then we can use Algorithm 1 to find

an AUS with ri ≥ r̂i ≥ rlb
i that is feasible for (d, ε,p).

To find r̂i for i = 1, 2, · · · , N , we can solve the following
optimization problem. Again, we assume the elements in rlb

are sorted in non-increasing order, i.e., rlb
1 ≥ rlb

2 ≥ · · · ≥ rlb
N .

OPT: min
r̂

N∑
i=1

r̂i

s.t.
r̂i
r̂i+1

∈ N∗, i = 1, 2, · · · , N − 1,

rlb
i ≤ r̂i ≤ 1, i = 1, 2, · · · , N.

Denote the optimal solution to OPT as r̂∗, which is a step-
down rate vector. If

∑N
i=1 r̂

∗
i ≤ 1, then we can use Algo-

rithm 1 (by setting rlb = r̂∗ in Algorithm 1) to find a feasible
AUS for (d, ε,p). Otherwise, if

∑N
i=1 r̂

∗
i > 1, we cannot use

Algorithm 1 to find a feasible scheduler.
A key step to solve OPT is to show that there exists

some k (k = 1, 2, · · · , N) such that r̂∗k = rlb
k in the

optimal solution r̂∗. Using this result, we can solve OPT
by fixing r̂∗k = rlb

k for N times (k = 1, 2, · · · , N). For
each k, since r̂∗k = rlb

k is fixed, we can divide OPT into
to parts: (i) optimizing r̂1, r̂2, · · · , r̂k−1; and (ii) optimizing
r̂k+1, r̂k+2, · · · , r̂N . Each part can be solved by dynamic

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 A DP Soluton to OPT

Input: A general rlb with l(d, ε,p) ≤ 1.
Output: An optimal solution to OPT, r̂∗

1: Set r̂∗i = 1 for each i. Set J∗ = N .
2: for k = 1, 2, · · · , N do
3: Set r̂k = rlb

k and Rk = {r̂k}.
4: if k ≥ 2 then
5: Set s(r̂k, k) = 0 and Ri = {nr̂k | rlb

i ≤ nr̂k ≤
1, n ∈ N∗} for each i = 1, 2, · · · , k − 1.

6: for i = k − 1, k − 2, · · · , 1 do
7: Compute s(r, i) = r+min r′∈Ri+1

&r/r′∈N∗
s(r′, i+1) and

prev(r, i) = argmin r′∈Ri+1

&r/r′∈N∗
s(r′, i + 1) for each

r ∈ Ri
8: end for
9: Set r̂1 = argminr∈R1

s(r, 1).
10: for i = 2, 3, · · · , k − 1 do
11: Set r̂i = prev(r̂i−1, i− 1).
12: end for
13: end if
14: if k ≤ N − 1 then
15: Set s(r̂k, k) = 0 and Ri = { r̂kn |

r̂k
n ≥ rlb

i , n ∈ N∗}
for each i = k + 1, k + 2, · · · , N .

16: for i = k + 1, k + 2, · · · , N do
17: Compute s(r, i) = r+min r′∈Ri−1

&r′/r∈N∗
s(r′, i−1) and

prev(r, i) = argmin r′∈Ri−1

&r′/r∈N∗
s(r′, i − 1) for each

r ∈ Ri
18: end for
19: Set r̂N = argminr∈RN s(r,N).
20: for i = N − 1, N − 2, · · · , k + 1 do
21: Set r̂i = prev(r̂i+1, i+ 1).
22: end for
23: end if
24: if

∑N
i=1 r̂i < J∗ then

25: Set r̂∗i = r̂i for i = 1, 2, · · · , N . Set J∗ =
∑N
i=1 r̂i.

26: end if
27: end for
28: return r̂∗ = [r̂∗1 , r̂

∗
1 , · · · , r̂∗N]

programming (DP). Due to page limit, we will not elaborate on
how we develop our solution. Instead, we present our solution
algorithm (in pseudocode) in Algorithm 2. We encourage
readers to study the algorithm and convince themselves that it
solves OPT. It can be shown the time complexity of Algorithm
2 is O(N2d2max).

Now we are ready to present our complete procedure, which
we call Stable Tolerance Scheduler (STS) in Algorithm 3. It
can be shown that the time complexity of STS is O(N2d2max).

Note that Algorithm 3 isn’t always able to find a feasible
scheduler, even though l(d, ε,p) ≤ 1. The next question to
ask is: Under what condition is Algorithm 3 guaranteed to to
find a feasible scheduler? The answer is given in the following
lemma.

Algorithm 3 Stable Tolerant Scheduler (STS)

Input: (d, ε,p) is stable tolerant, with l(d, ε,p) ≤ 1
Output: A feasible scheduler π

1: Compute rlb by (10) and sort its elements in non-
increasing order.

2: Solve OPT by Algorithm 2 and obtain an optimal solution
r∗.

3: If
∑N
i=1 r

∗
i ≤ 1, use Algorithm 1 (by letting rlb = r∗) to

find a feasible scheduler π.

Lemma 3 For any stable tolerant (d, ε,p), Algorithm 3 can
always find a feasible scheduler if l(d, ε,p) ≤ ln 2.

A Proof Sketch To prove Lemma 3, we assume STS cannot
find a feasible scheduler for (d, ε,p). Then it is sufficient if
we can prove l(d, ε,p) > ln 2.

Since STS cannot find a feasible scheduler for (d, ε,p), we
must have

∑N
i=1 r̂

∗
i > 1. Since

∑N
i=1 r̂

∗
i is the minimum, then

for any r̂ that is feasible to OPT, we must have
∑N
i=1 r̂i > 1.

For any x > 0, we define a vector r̂x as

r̂xi = x · 2dlog2(
rlb
i
x)e, i = 1, 2, · · · , N. (14)

It can be shown that r̂x is feasible to OPT, so we have∑N
i=1 r̂

x
i > 1. Define g(x) = 1

x . We have
∫ 1

0.5
g(x)dx = ln 2,

so we have ∫ 1

0.5

g(x) ·
N∑
i=1

r̂xi > ln 2. (15)

It can be shown that the LHS of (15) equals to l(d, ε,p). So
we have l(d, ε,p) > ln 2.

VI. FROM STABLE TOLERANT TO UNSTABLE TOLERANT

In the last section, we studied the stable tolerant case (i.e.,
εi ≥ pi for all i’s) and presented STS algorithm. In this
section, we study the unstable tolerant case, i.e., εi < pi for
at least some i.

We will follow the same roadmap in the last section, with
some necessary modifications along the way. We start with
Theorem 1, which no longer holds in the unstable tolerance
case. This is because ri ≥ rlb

i for each i is no longer
a sufficient condition for an AUS to be feasible. As a fix
to this problem, we propose target rate vector, defined as
rtar = [rtar

1 , r
tar
2 , · · · , rtar

N]. We wish to have an AUS be feasible
if its ri ≥ rtar

i .
In the unstable tolerant case, for those sources i’s with εi ≥

pi, we can just set rtar
i = rlb

i . So if ri ≥ rtar
i is satisfied, then (5)

will be satisfied for these i’s (from the proof of Theorem 1).
Now we consider those i’s with εi < pi. We want to find a
rtar
i such that: if ri ≥ rtar

i is satisfied, then (5) is also satisfied
for these i’s.

We consider one source i with εi < pi. Since it’s difficult
to analyze source i’s AoI performance for a general AUS,
we are going to consider an EUS, which guarantees a strict
periodic transmission pattern for source i by relaxing certain
transmission intervals with one extra slot. Let’s consider an

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

EUS with transmission rate r′i for node i. Clearly, if (5) can
be satisfied under this EUS (with r′i for source i), then under
any AUS with ri > r′i (5) is also satisfied for source i. So all
we need to do is to find the smallest r′i for an EUS such that
(5) is satisfied, and choose it as rtar

i for source i.
Under the EUS, over all time windows [t−di, t−1] (for all

t > di), the average number of transmissions within a window
is dir′i. It is also easy to see that the number of transmissions
within any window does not differ by more than 1. Therefore
for any t, within a time window [t−di, t−1], there are either
bdir′ic or (bdir′ic+1) transmissions for source i. Denote a as
the fraction of t’s with bdir′ic transmissions in [t− di, t− 1].
Then the fraction of t’s with (bdir′ic + 1) transmissions in
[t− di, t− 1] is (1− a). We have

a · bdir′ic+ (1− a) · (bdir′ic+ 1) = dir
′
i . (16)

Solving the above for a, we have:

a = bdir′ic+ 1− dir′i . (17)

At each time t, suppose there are k transmissions for source
i within the window [t − di, t − 1]. Then only if all of
these k transmissions fail, we will have Ai(t) > di. That is,
P{Ai(t) > di} = pki . Since k = bdir′ic with probability a and
k = bdir′ic+ 1 with probability (1− a), we have

lim
T→∞

1

T

T∑
t=1

[Ai(t) > di] = a · pbdir
′
ic

i + (1− a) · pbdir
′
ic+1

i

= (bdir′ic+ 1− dir′i) · p
bdir′ic
i + (diri − bdir′ic) · p

bdir′ic+1
i .

(18)
To satisfy (5), we need to have

(bdir′ic+ 1− dir′i) · p
bdir′ic
i + (dir

′
i − bdir′ic) · p

bdir′ic+1
i ≤ εi.

(19)
It can be shown the LHS of (19) is monotonically decreasing

w.r.t. r′i. To ensure (19) holds, we can solve the following
equation:

(bdixc+1−dix)·pbdixci +(dix−bdixc)·pbdixc+1
i = εi . (20)

It can be shown that the solution to (20) is

x =
(1− pi)b ln εiln pi

c+ 1− εip
−b ln εi

ln pi
c

i

(1− pi)di
. (21)

Then for any r′i ≥ x, (19) will hold. But under our EUS, 1/r′i
is the transmission interval length and must be an integer. So
the smallest r′i that ensures (19) holds is r′i = 1/b1/xc.

In summary, rtar
i is given by

rtar
i =


1⌊
1
x

⌋ , if εi < pi,

rlb
i , if εi ≥ pi,

(22)

where x is given by (21) and rlb
i is given by (10).

Following the above discussions, we have the following
lemma.

Algorithm 4 Unstable Tolerant Scheduler (UTS)

Input: (d, ε,p) is unstable tolerant, with l(d, ε,p) ≤ 1
Output: A feasible scheduler π

1: Compute rtar by (22), and sort its elements in non-
increasing order.

2: Replace rlb
i ’s by rtar

i ’s in OPT, solve OPT by Algorithm
2, and obtain an optimal solution r∗.

3: If
∑N
i=1 r

∗
i ≤ 1, use Algorithm 1 (by letting rlb = r∗) to

find a feasible scheduler π.

Lemma 4 In the unstable tolerant case, an AUS π is feasible
for (d, ε,p) if ri ≥ rtar

i for each i = 1, 2, · · · , N , where rtar
i

is given in (22).

The proof of Lemma 4 is based on our discussion that once
ri ≥ rtar

i for each i = 1, 2, · · · , N , then (5) is satisfied for
each i. Lemma 4 generalizes the results of the “if” part in
Theorem 1. However, The “only if” part in Theorem 1 does
not hold even if we generalize rlb

i with rtar
i . This is because

we employed EUS relaxation when we define rtar
i in Lemma 4

while there was no relaxation when we find rlb
i in Theorem 1.

With Lemma 4 in hand, following the same roadmap in
the last section, we then consider the special case of step-
down rate vector rtar (instead of rlb). We can use Algorithm 1
to construct an AUS for unstable tolerant (d, ε,p) with step-
down rate vector rtar by merely replacing rlb with rtar. We
have the following lemma, which is similar to Theorem 2.

Lemma 5 For any unstable tolerant (d, ε,p) with a step-
down rate vector rtar and

∑N
i=1 r

tar
i ≤ 1, the scheduler

constructed by Algorithm 1 (with rlb replaced by rtar) is
feasible for (d, ε,p).

Then we consider the general unstable tolerant (d, ε,p)’s
that may not have a step-down rate vector rtar. Similar to what
we did in the last section, we propose to find a step-down rate
vector r̂ with

∑N
i=1 r̂i ≤ 1 and r̂i ≥ rtar

i for each i. Again,
we can solve an OPT, with rlb

i ’s replaced by rtar
i ’s.

Based on the above discussions, we present an algorithm,
which we call Unstable Tolerance Scheduler (UTS), for the
unstable tolerant case in Algorithm 4. The complexity of UTS
is the same as the complexity of STS, which is O(N2d2max).

Following the same token as for Lemma 3, we have the
following lemma for the unstable tolerant case.

Lemma 6 For any unstable tolerant (d, ε,p), Algorithm 4
can always find a feasible scheduler if

∑N
i=1 r

tar
i ≤ ln 2.

VII. NUMERICAL RESULTS

In this section, we use simulations to validate our theoretical
results and evaluate our algorithms.

A. Case Study

In this section we study two cases to validate that violation
rate for each source is no greater than εi.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

Table I: Stable tolerant case study

Source 1 2 3 4 5 6 7 8 9 10
di 6 10 10 12 15 16 18 20 25 30
pi 0.1 0.05 0.15 0.05 0.1 0.05 0.1 0.05 0.2 0.1
εi 0.1 0.05 0.2 0.05 0.1 0.1 0.15 0.05 0.2 0.2
ρi 0.071 0.046 0.134 0.034 0.039 0.013 0.099 0.045 0.139 0.041

Table II: Unstable tolerant case study

Source 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
di 60 100 120 150 190 240 270 300 330 360
pi 0.2 0.1 0.05 0.1 0.15 0.2 0.1 0.05 0.2 0.15
εi 0.1 0.05 0.15 0.2 0.1 0.05 0.15 0.1 0.2 0.1
ρi ≤ 0.041 0.041 0.051 0.079 0.076 0.041 0.091 0.039 0.143 0.089

1) Stable Tolerant Case: We consider N = 10 source
nodes, with parameters di’s, pi’s and εi’s for i = 1, 2, · · · , 10
given in Table I. The load is l(d, ε,p) = 0.742. As we can
see, we have εi ≥ pi for each i, so (d, ε,p) is stable tolerant
and we will use STS to find a scheduler for it.

In STS, we first compute rlb = [0.167 0.100 0.094 0.083
0.067 0.059 0.052 0.050 0.040 0.030]. Then we solve OPT
by Algorithm 2 and obtain an optimal solution r∗ = [0.210
0.105 0.105 0.105 0.105 0.105 0.052 0.052 0.052 0.052].

We have
∑N
i=1 r

∗
i = 0.944 ≤ 1, so we use Algorithm 1 (to

find a feasible scheduler π:

π = (ABDFJACEGABDFIACEH).

Readers can verify π is an AUS.
Under this AUS π, we simulate T = 1, 000, 000 time slots.

Denote the measured (observed) violation rate for source i as
ρi =

1
T

∑T
t=1[Ai(t) > di] over these 1, 000, 000 time slots.

In Table I (last row), we show the measured ρi for each i =
1, 2, · · · , 10. We find that ρi < εi for each i, so our AUS π is
indeed feasible for the given (d, ε,p)..

2) Unstable Tolerant Case: We now consider N = 100
source nodes as shown in Table II. The load is l(d, ε,p) =
0.658. As we can see, this (d, ε,p) is unstable tolerant (e.g.,
pi > εi for sources 1–10, among others). So we will use UTS
to find a scheduler for it. In UTS, we first compute rtar, then
solve OPT by Algorithm 2, and obtain an optimal solution
r∗. We have

∑N
i=1 r

∗
i = 0.976 < 1, so we use Algorithm 1 to

find a feasible scheduler π (with cycle length c = 240). Under
π, we simulate T = 10, 000, 000 time slots, and calculate
the violation rate ρi = 1

T

∑T
t=1[Ai(t) > di] for all i’s. For

each group of 10 nodes, we list the largest measured violation
rate ρi in the group (e.g., for i = 1–10, 0.041 is the largest
measured violation rate among ρ1, ρ2, · · · , ρ10) in the last row
of Table II. We can see that ρi < εi for all i = 1, 2, · · · , 100.
So π is indeed feasible for the given (d, ε,p).

B. Impact of Tolerance Rate ε

In this section we study the impact of tolerance rate ε for
algorithms STS and UTS. We consider 50 sources, i.e., N =
50. For ease of presentation, we assume all sources have the
same pi and the same εi, i.e., pi = p and εi = ε for all i’s.
We assume p = 0.1 and vary ε from 0.04 to 0.3, i.e., from a
value smaller than p to a value greater than p. When ε < p,
we use UTS and when ε ≥ p, we use STS.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l(d, ǫ, p)

0

20

40

60

80

100

S
u

c
c
e

s
s
 p

e
rc

e
n

ta
g

e

 ǫ=0.04 ǫ=0.06 ǫ=0.08 ǫ=0.099 ǫ=0.1

 ǫ=0.2

 ǫ=0.3

 ln 2

 stable tolerant

 unstable tolerant

Figure 2: Success percentage for STS/UTS to find a feasible
scheduler when p = 0.1.

We assume di ∈ {10, 20, · · · , 300}. For each ε, we
randomly generate 100 different d’s for each load interval
l(d, ε,p) ∈ (0.3, 0.32], (0.32, 0.34], · · · , (0.98, 1]. For each
load interval we run the algorithm and calculate the percentage
of (d, ε,p)’s for which our algorithm (either STS or UTS,
depending on ε) successfully finds a feasible scheduler. The
results are shown in Fig. 2. As we can see, as ε increases, the
corresponding curve shifts to the right, meaning that for the
same success percentage in finding a feasible scheduler, the
network can take a higher load when ε increases. Alternatively,
for the same load, the success percentage in finding a feasible
scheduler increases with ε. We also show the load guarantee
for STS, ln 2 in the figure. We can see in the stable tolerant
case, when l(d, ε,p) ≤ ln 2, the success percentage of STS
is 100% (i.e., when ε is 0.1, 0.2, and 0.3), which confirms
Lemma 3.

VIII. CONCLUSIONS

This paper investigates an important AoI scheduling prob-
lem that considers tolerance of occasional deadline violations.
To the best of our knowledge, this class of problem has
not been studied in the AoI research literature. We first
present system load l(d, ε,p) that seamlessly integrates AoI
requirement d, channel condition p and violation tolerance ε
into one metric, and show that (d, ε,p) is schedulable only
if l(d, ε,p) ≤ 1. Then we address the scheduling problem
by exploring the relationship between ε and p and identify
two cases: stable tolerant and unstable tolerant. For the stable
tolerant case, we present STS, which can find a feasible
scheduler as long as l(d, ε,p) ≤ ln 2. For the unstable tolerant
case, we present UTS, for which we give a sufficient condition
to find a feasible scheduler. Simulation results show that the
feasible scheduler found by our algorithm, either STS or UTS,
can always guarantee ε. Further, STS does offer a guarantee
of finding a feasible scheduler if l(d, ε,p) ≤ ln 2.

ACKNOWLEDGMENTS

This research was supported in part by ONR under MURI
Grant N00014-19-1-2621, Virginia Commonwealth Cyber Ini-
tiative (CCI), and Virginia Tech Institute for Critical Technol-
ogy and Applied Science.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing Age of
Information in Vehicular Networks,” in Proc. IEEE SECON, pp. 350–
358, Salt Lake City, UT, USA, June 27–30, 2011.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-Time Status: How Often
Should One Update?” in Proc. IEEE INFOCOM, pp. 2731–2735,
Orlando, FL, USA, Mar. 25–30, 2012.

[3] Y. Sun, “A Collection of Recent Papers on the Age of Information,”
available at http://www.auburn.edu/%7eyzs0078

[4] Y. Hsu, E. Modiano, and L. Duan, “Age of Information: Design and
Analysis of Optimal Scheduling Algorithms,” in Proc. IEEE ISIT,
pp. 561–565, Archen, Germany, June 25–30, 2017.

[5] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing
the Age of Information in Broadcast Wireless Networks,” in Proc.
Allerton Conference, pp. 844–851, Monticello, IL, USA, Sept. 27–30,
2016.

[6] J. Zhong, R.D. Yates, and E. Soljanin, “Two Freshness Metrics for Local
Cache Refresh,” in Proc. IEEE ISIT, pp. 1924–1928, Vail, CO, USA,
June 17–22, 2018.

[7] A.M. Bedewy, Y. Sun, and N.B. Shroff, “Optimizing Data Freshness,
Throughput, and Delay in Multi-Server Information-Update Systems,”
in Proc. IEEE ISIT, pp. 2569–2573, Barcelona, Spain, July 10–15, 2016.

[8] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-Optimal Updates of
Multiple Information Flows,” in Proc. IEEE INFOCOM Workshops –
Age of Information Workshop, pp. 136–141, Honolulu, HI, USA, April
15–19, 2018.

[9] C. Li, S. Li, and Y.T. Hou, “A General Model for Minimizing Age of
Information at Network Edge,” in Proc. IEEE INFOCOM, pp. 118–126,
Paris, France, Apr. 29 – May 2, 2019.

[10] C. Li, Y. Huang, Y. Chen, B. Jalaian, Y.T. Hou, and W. Lou, “Kronos:
A 5G Scheduler for AoI Minimization under Dynamic Channel Condi-
tions,” in Proc. IEEE ICDCS, pp. 1466–1472, Dallas, TX, USA, July
7–9, 2019.

[11] Q. He, D. Yuan, and A. Ephremides, “Optimal Link Scheduling for Age
Minimization in Wireless Systems,” IEEE Trans. on Information Theory,
vol. 64, issue 7, pp. 5381–5394, July 2018.

[12] C. Joo and A. Eryilmaz, “Wireless Scheduling for Information Freshness
and Synchrony: Drift-based Design and Heavy-Traffic Analysis,” in
Proc. WiOpt, pp. 1–8, Paris, France, May 15–19, 2017.

[13] N. Lu, B. Ji, and B. Li, “Age-based Scheduling: Improving Data
Freshness for Wireless Real-Time Traffic,” in Proc. ACM MobiHoc,
pp. 191–200, Los Angeles, CA, USA, June 26–29, 2018.

[14] R. Talak, S. Karaman, and E. Modiano, “Optimizing Information Fresh-
ness in Wireless Networks under General Interference Constraints,” in
Proc. ACM MobiHoc, pp. 61–70, Los Angeles, CA, USA, June 26–29,
2018.

[15] A.M. Bedewy, Y. Sun, and N.B. Shroff, “Age-Optimal Information
Updates in Multihop Networks,” in Proc. IEEE ISIT, pp. 576–580,
Archen, Germany, June 25–30, 2017.

[16] R. Talak, S. Karaman, and E. Modiano, “Minimizing Age-of-Information
in Multi-Hop Wireless Networks,” in Proc. Allerton Conference,
pp. 486–493, Monticello, IL, USA, Oct. 3–6, 2017.

[17] Z. Qian, F. Wu, J. Pan, K. Srinivasan, and N.B. Shroff, “Minimizing
Age of Information in Multi-channel Time-sensitive Information Update
Systems,” in Proc. IEEE INFOCOM, pp. 446–455, online conference,
July 6–9, 2020.

[18] J.P. Champati, R.R. Avula, T.J. Oechtering, and J. Gross, “On the
Minimum Achievable Age of Information for General Service-Time Dis-
tributions,” in Proc. IEEE INFOCOM, pp. 456–465, online conference,
July 6–9, 2020.

[19] J. Lou, X. Yuan, S. Kompellay, and N. Tzeng, “AoI and Throughput
Tradeoffs in Routing-aware Multi-hop Wireless Networks,” in Proc.
IEEE INFOCOM, pp. 476–485, online conference, July 6–9, 2020.

[20] A.M. Bedewy, Y. Sun, R. Singh, and N.B. Shroff, “Optimizing Infor-
mation Freshness Using Low-Power Status Updates via Sleep-Wake
Scheduling,” in Proc. ACM MobiHoc, pp. 51–60, online conference,
Oct. 11–14, 2020.

[21] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “Asymptot-
ically Optimal Scheduling Policy for Minimizing the Age of Informa-
tion,” in Proc. IEEE ISIT, pp. 1747–1752, online conference, June 21–26,
2020.

[22] T. Park, W. Saad, and B. Zhou, “Centralized and Distributed Age
of Information Minimization with Non-linear Aging Functions in the
Internet of Things,” IEEE Internet of Things Journal, to appear, DOI:
10.1109/JIOT.2020.3046448.

[23] B. Zhou and W. Saad, “Minimum Age of Information in the Internet of
Things with Non-Uniform Status Packet Sizes,” IEEE Trans. on Wireless
Communication, vol. 19, issue. 3, pp. 1933–1947, March 2020.

[24] H. Ma, S. Zhou, X. Zhang, and L. Xiao, “Transmission Scheduling
for Multi-loop Wireless Networked Control Based on LQ Cost Offset,”
in Proc. IEEE INFOCOM Workshops – Age of Information Workshop,
online conference, July 6, 2020.

[25] Y. Wang and W. Chen, “Adaptive Power and Rate Control for Real-
time Status Updating over Fading Channels,” IEEE Trans. on Wireless
Communication, to appear, DOI: 10.1109/TWC.2020.3047426.

[26] B. Sombabu and S. Moharir, “Age-of-Information Based Scheduling
for Multi-Channel Systems,” IEEE Trans. on Wireless Communication,
vol. 19, issue. 7, pp. 4439–4448, July 2020.

[27] H.H. Yang, A. Arafa, T.Q.S. Quek, and V. Poor, “Optimizing In-
formation Freshness in Wireless Networks: A Stochastic Geome-
try Approach,” IEEE Trans. on Mobile Computing, to appear, DOI:
10.1109/TWC.2020.3047426.

[28] J. Sun, Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Closed-Form
Whittle’s Index-Enabled Random Access for Timely Status Update,”
IEEE Trans. on Communications, vol. 68, issue. 3, pp. 1538–1551,
March 2020.

[29] H. Tang, J. Wang, L. Song, and J. Song, “Minimizing Age of Information
With Power Constraints: Multi-User Opportunistic Scheduling in Multi-
State Time-Varying Channels,” IEEE J. Selected Areas in Commun.,
vol. 38, issue. 5, pp. 854–868, May 2020.

[30] R.L. Garham, D.E. Knuth, and O. Patashnik, “Concrete Mathematics,”
Chapter 2, Addison-Wesley, 1989.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:10:56 UTC from IEEE Xplore. Restrictions apply.

		2021-07-22T13:50:24-0400
	Preflight Ticket Signature

