IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

6439

A Deep-Reinforcement-Learning-Based Approach
to Dynamic eMBB/URLLC Multiplexing in 5G NR

Yan Huang
Chengzhang Li

Abstract—This article investigates the dynamic multiplexing
of enhanced mobile broadband (eMBB) and ultrareliable and
low latency communications (URLLC) on the same channel in
5G NR. Due to significant difference in transmission time scale,
URLLC employs a preemptive puncturing technique to multiplex
its traffic onto eMBB traffic for transmission. The optimization
problem to solve is to minimize the adverse impact of such
preemptive puncturing on eMBB users. We present DEMUX—a
model-free deep reinforcement learning (DRL)-based solution to
this problem. The essence of DEMUX is to use deep function
approximators (neural networks) to learn an optimal algorithm
for determining the preemption solution in each eMBB transmis-
sion time interval (TTI). Our novel contributions in the design
of DEMUX include the first use of the DRL method with a
large and continuous action domain for resource scheduling in
NR, a mechanism to ensure fast and stable learning conver-
gence by exploiting the intrinsic properties of the problem, and
a mechanism to obtain a feasible preemption solution from the
unconstrained output of a neural network while minimizing loss
of information. The experimental results show that DEMUX sig-
nificantly outperforms state-of-the-art algorithms proposed in the
3GPP standards body and the literature.

Index Terms—5G NR, deep reinforcement learning (DRL),
enhanced mobile broadband (eMBB)/ultrareliable and low
latency communication (URLLC) multiplexing, preemption,
puncturing, resource allocation.

I. INTRODUCTION

MAIJOR challenge in 5G NR cellular networks is to sup-

port service types with extremely diverse performance
requirements with a unified air interface [1]. Enhanced mobile
broadband (eMBB) and ultrareliable and low latency com-
munications (URLLC) are two such types of services in
NR [2]. eMBB aims to offer a per-user data rate higher than
100 Mb/s [3], while URLLC targets at mission-critical applica-
tions with low data rates (0.1-10 Mb/s) but extremely stringent
latency requirements on ~1-ms time scale [4]. To meet their
service requirements, eMBB and URLLC employ very differ-
ent time duration for data transmission. In NR, each time slot is
divided into a number of mini-slots [5]. The eMBB uses time

Manuscript received October 29, 2019; revised February 6, 2020 and
February 25, 2020; accepted February 29, 2020. Date of publication
March 5, 2020; date of current version July 10, 2020. This work was
supported in part by NSF under Grant 1642873. (Corresponding author:
Y. Thomas Hou.)

The authors are with the Department of Electrical and Computer
Engineering, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061 USA (e-mail: huangyan@vt.edu; shaoran@vt.edu; licz17@vt.edu;
thou@vt.edu; wjlou@vt.edu).

Digital Object Identifier 10.1109/JI0T.2020.2978692

, Student Member, IEEE, Shaoran Li
, Student Member, IEEE, Y. Thomas Hou

, Student Member, IEEE,

, Fellow, IEEE, and Wenjing Lou ~, Fellow, IEEE

slots for transmission in order to achieve high data through-
put. On the other hand, the URLLC data are transmitted in
mini-slots so as to minimize latency.

When eMBB and URLLC services are multiplexed on
the same channel, the optimal allocation of radio resources
becomes a challenging problem. To address this problem, a
novel resource allocation scheme termed “URLLC preemp-
tion,” was proposed in 3GPP standards body [6]. The essence
of this scheme is to have an arriving URLLC packet preempt
resources that have already been allocated to the eMBB users.
Specifically, when a URLLC packet arrives, its transmission is
scheduled immediately for the next mini-slot without waiting
for the end of eMBB transmissions. Depending on the packet
size and the selected modulation and coding scheme (MCS), a
URLLC packet requires a certain number of subcarriers (SCs)
to transmit. These SCs are obtained by directly puncturing the
time—frequency resource grid in the scheduled mini-slot. The
punctured SCs spread across resources allocated to different
eMBB users. To keep track of (pinpoint) which resources have
been taken by URLLC, special indication signals are generated
and sent to the eMBB users, which will be used for decoding.
It has been shown that this preemptive puncturing approach
is more spectrally efficient than static or semistatic spectrum
separation between eMBB and URLLC, due to the sporadic
and random nature of the URLLC traffic [7].

Under this preemptive puncturing approach, an important
optimization problem is the allocation of SCs preempted by
each URLLC transmission among the eMBB users. The decod-
ing result of an eMBB user’s received transmission directly
depends on the URLLC preemption: the more SCs being
punctured by URLLC, the more likely the decoding will fail.
Such a decoding failure will lead to a loss of eMBB utility
(e.g., the sum of eMBB users’ data rates or weighted rates).
Therefore, the objective of our optimization problem is to min-
imize the loss of eMBB utility through properly spreading out
preempted resources (for URLLC) among the eMBB users in
each transmission.

Unfortunately, the above optimization problem cannot
be formulated and solved through traditional model-based
optimization approaches. This is because the objective (cost)
function of the problem requires the modeling of eMBB
decoding behavior (e.g., failure probability) as a function
of the amount of URLLC preemption in exact closed form.
However, due to the complexities of NR PHY layer tech-
nologies such as LDPC channel code, it is impossible to
obtain a closed-form expression for this cost function. As will

2327-4662 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0544-6602
https://orcid.org/0000-0002-2648-5478
https://orcid.org/0000-0003-3142-0131
https://orcid.org/0000-0003-3716-5768
https://orcid.org/0000-0002-2421-4623

6440

be explained in Section IV, other approximate modeling or
numerical approaches are also unsuitable for addressing this
problem.

In this article, we present “DEMUX,” a model-free deep
(DE)-reinforcement-learning-based multiplexer (MUX) for the
eMBB and URLLC services. The most significant advantage
of DEMUX is that it offers a solution to the URLLC pre-
emption problem without a prior explicit problem formulation.
DEMUX uses deep function approximators (also known as,
neural networks) to learn an optimal algorithm for determin-
ing the preemption solution. Architecturally, DEMUX consists
of a learning plane and a scheduling plane. The goal of the
learning plane is to learn an optimal algorithm for the URLLC
preemption. The goal of the scheduling plane is to use the
algorithm learned by learning plane to compute the preemp-
tion solution for URLLC. Our main contributions in the design
of DEMUX are summarized as follows.

1) This article presents the first solution to the URLLC
preemption problem that utilizes deep reinforcement
learning (DRL). In the broader context, this is also
the first work (to the best of our knowledge) that
employs the DRL method with large and continuous
action domain to address resource scheduling problems
in NR. This is significant as deep Q-learning (DQL)
methods (the most commonly used learning methods for
wireless communications) are only effective to address
problems with discrete and small action space but are
not suitable to solve problems with large and continuous
action domain, such as the URLLC preemption problem
that we study in this article.

2) On the learning plane of DEMUX, although our design
is inspired by the deep deterministic policy gradient
(DDPG) method [27], we find that there exists a serious
convergence issue with this approach in addressing our
problem. To mitigate this issue, we propose to augment
the DDPG method by exploiting some intrinsic proper-
ties of the URLLC preemption problem. This includes
adapting the learning objective of DDPG based on
the scheduling mechanism of eMBB and eliminating the
use of target networks in DDPG without hampering the
stability of the learning process.

3) On the scheduling plane, a major problem is that the
learned algorithm, which is an unconstrained neural
network, cannot guarantee to offer a feasible solution
for the URLLC preemption. To address this problem,
we propose a novel approach based on the concept of
relative entropy in the information theory to translating
the raw output of the learned algorithm (neural network)
into a feasible preemption solution. We show that our
proposed solution is optimal in terms of minimizing the
loss of information caused by such translation.

4) In our implementation, we build a PHY-MAC NR sim-
ulator for dynamic eMBB/URLLC multiplexing and a
learning module based on our design of DEMUX. Our
implementation captures essential functions in PHY and
MAC layers of NR that are related to URLLC pre-
emption as well as interaction mechanisms between an
NR base station (BS) and a DRL learning module. Our

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

NR simulator is tuned and validated through extensive
experiments to ensure the correctness of the PHY- and
MAC-layer functions [e.g., the measurement of work-
ing SNRs to ensure the target block error rates (BLERSs)
for different MCS levels, validation for soft demodu-
lation and decoding under URLLC preemption, among
others].

5) Using our NR simulator, we validate the performance
of DEMUX through benchmarking with two other pre-
emption schemes proposed in the literature (resource
proportional (RP) from [10] and fixed-frequency-part
(FFP) from 3GPP standards body [8], [9]) under differ-
ent multipath channel fading models. These benchmark
schemes were developed based on various modeling
assumptions and thus are considered as heuristic solu-
tions to the URLLC preemption problem. Experiment
results show that DEMUX significantly outperforms RP
and FFP in terms of both sum utility and throughput in a
cell. In particular, when the URLLC traffic load is high,
DEMUX is able to achieve more than 130% and 75%
performance gains over RP and FFP, respectively, in our
test network scenarios.

The remainder of this article is organized as follows.
In Section II, we provide the necessary background on
dynamic eMBB/URLLC multiplexing and introduce the
optimal URLLC preemption problem. In Section III, we
review existing works on the URLLC preemption problem in
the literature. In Section IV, we go deep into technical chal-
lenges in solving the problem and show why model-based
optimization approaches cannot be applied. In Section V,
we give an overview of DEMUX—our proposed solution to
the URLLC preemption problem. In Section VI, we present
DEMUX’s scheduling plane, while in Section VII, we present
DEMUX’s learning plane. Our implementation of DEMUX
is presented in Section VIII. Section IX presents experimental
results based on our implementation. Section X concludes this
article.

II. DYNAMIC MULTIPLEXING OF EMBB AND URLLC

When the eMBB and URLLC services are multiplexed on
the same downlink channel, the allocation of time—frequency
resources becomes very complicated. This is because eMBB
and URLLC transmissions have different duration and are
scheduled on very different time scales. In NR, the time
domain of a channel is divided into time slots, with each time
slot being further divided into multiple mini-slots. The dura-
tion of an eMBB transmission, termed as the transmission time
interval (TTI), may span one or multiple time slots. In contrast,
each URLLC packet is transmitted using a mini-slot.

URLLC Preemptive Puncturing: In this article, we investi-
gate “URLLC resource preemption,” a mechanism for dynamic
multiplexing of eMBB and URLLC that was proposed in the
3GPP standards body [6]. Fig. 1 illustrates this mechanism.
The frequency domain of a channel consists of a large num-
ber of contiguous SCs. In each TTI, all SCs on the channel are
allocated to the eMBB users using some scheduling algorithm
(e.g., proportional fairness (PF) [16], [17]). On the other hand,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED APPROACH TO DYNAMIC eMBB/URLLC MULTIPLEXING IN 5G NR

Mini-slots

eMBB
user 1

eMBB

I I II user 2
eMBB .
I I user 3

2 mm SCs I

Frequency

preempted
by URLLC

Time

TTI1 T2 TTI3

Fig. 1. Tllustration of URLLC resource preemption.

URLLC packet arrivals are sporadic and random in time. When
a URLLC packet arrives, its transmission is scheduled imme-
diately for the next mini-slot.! Each URLLC packet requires
a certain number of SCs to transmit (smaller than the total
number of SCs on the channel). As all SCs have already been
allocated to eMBB users, an incoming URLLC packet obtains
its required SCs by puncturing/preempting resources from on-
going eMBB transmissions. That is, a portion of SCs allocated
to each eMBB user are reassigned to URLLC in the scheduled
mini-slot. As shown in Fig. 1, the preempted SCs do not need
to be contiguous in the frequency [10]. Then, the data bits of
eMBB are flushed out on those SCs preempted by URLLC.

In the example shown in Fig. 1, there are three, two, and
three eMBB transmissions in TTI 1, 2, and 3, respectively.
The numbers of URLLC transmissions in TTI 1, 2, and 3 are
two, one, and three, respectively. Specifically, in TTI 1, there
is a URLLC transmission in the second mini-slot and another
one in the fifth mini-slot. Note that the SCs punctured by each
URLLC packet are spread out across multiple eMBB users.

Under this preemption mechanism, eMBB code word bits
are corrupted on SCs punctured by URLLC. To help the eMBB
users decode, the BS sends an indication signal to each eMBB
user at the end of a TTI to specify positions of preempted
resources in time and frequency [22], [24]. Based on this indi-
cation, the eMBB users can precisely eliminate the corrupted
bits before LDPC decoding. This will avoid polluting other
code word bits during decoding and improve the decoding
success probability.

Problem Statement: For each TTI, eMBB transmissions are
scheduled with a specific objective, e.g., maximizing the sum
utility of the eMBB users (such as the sum cell throughput
or PF utility). The actually achieved eMBB utility, however,
depends on whether or not each eMBB user can successfully
decode its received transmission. If all transmissions are suc-
cessful, then the maximum utility is preserved, while failed
transmissions result in a loss of utility.

As expected, the decoding failure probability of an eMBB
transmission increases with the amount of URLLC preemp-
tion. Since each URLLC packet can preempt SCs from

n this article, we assume that at most one URLLC packet can be transmit-
ted in a mini-slot. This is because a URLLC transmission generally requires
very broad frequency bandwidth (may be more than half of the entire channel
bandwidth).

6441

multiple eMBB users, an important optimization problem to
solve is: For each URLLC transmission, how many SCs should
we preempt from each eMBB user so that the loss of sum
eMBB utility is minimized? This is the problem that we will
investigate in this article.

For each eMBB user, we assume that a contiguous block
of SCs starting from the lowest/highest frequency will be
preempted (when preemption happens). We will not further
optimize positions of preempted SCs within each eMBB
user’s resources since such optimization will incur exces-
sive overhead for feedback and control signaling. A practical
set of constraints for URLLC puncturing is that the num-
ber of SCs preempted from each eMBB user cannot exceed
the number of SCs allocated to her. Such constraints must
be satisfied by any feasible preemption solution for URLLC
transmissions.

III. RELATED WORK

There have been a number of previous works on dynamic
multiplexing of eMBB and URLLC based on preemptive punc-
turing [8]-[11]. In 3GPP standards body [8], [9], a very simple
(and easy to implement) preemption scheme was proposed.
We call this scheme FFP in this article. FFP statically assigns
a contiguous block of SCs on the channel for each URLLC
transmission. As we will show in Section IX, such a static
allocation (preemption) scheme achieves poor performance
in terms of maximizing eMBB utility. This demonstrates the
critical need for optimizing URLLC preemption among the
eMBB users, which is the problem that we study in this
article.

The works in [10] and [11] explored optimizations of the
URLLC preemption based on assumptions of specific mathe-
matical models for the cost function. Here, the cost function
represents the loss of eMBB utility as a function of the
amount of resources (SCs) preempted from each eMBB user.
Under this approach, Anand et al. [10] assumed different cost
function models (linear or nonlinear) and developed a cus-
tomized solution for each model. Specifically, under a linear
cost function model, a solution that preempts SCs in pro-
portion to each eMBB user’s resource allocation was found
to be optimal. Under a nonlinear cost function model, a
nonclosed-form solution based on the standard optimization
formulation was proposed. Bairagi et al. [11] assumed a lin-
ear model for cost function and formulated an optimization
problem for resource allocation between eMBB and URLLC.
Then, a matching-based algorithm was proposed to solve the
formulated problem.

A recent work [12] studied machine-learning-based resource
scheduling for eMBB/URLLC multiplexing on the same
channel. The flexible setting of TTI duration for different
services was considered as an enhancement to the traditional
fixed-length TTI-based scheduling. However, the multiplexing
mechanism considered in [12] is fundamentally different from
the URLLC puncturing scheme that we study in this arti-
cle. The proposed random forest-based classification algorithm
cannot be easily extended to address our URLLC preemption
optimization problem.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

6442

IV. WHY MODEL-BASED APPROACHES WILL NOT WORK

Although a model-based approach is attractive from a math-
ematical perspective, it suffers from the following major
flaw. Specifically, the underlying assumption that the optimal
URLLC preemption problem can be abstracted and mod-
eled with a mathematical formulation does not hold. The
main reason here is that the cost (objective) function of the
problem cannot be modeled in closed form. Inputs to this
cost function include URLLC preemption among the eMBB
users, MCS selection and SC allocation for each eMBB
user, channel conditions across SCs, among others. As we
shall discuss in the rest of this section, it is mathematically
intractable to express this cost function through either exact
analytical approaches, simplified approximations, or numerical
methods.

First, the cost function cannot be obtained through analytical
abstraction and modeling due to the complexities involved in
the NR PHY layer. In NR, LDPC is employed as the forward
error correction (FEC) channel code for data transmission
[21], [24]. It is well known that LDPC decoding performance
is very difficult to analyze and cannot be modeled exactly.
There is no closed-form expression for the error-correction
capability of LDPC.? As a result, we cannot obtain an explicit
expression for the BLER performance of eMBB. In practice,
the BLER curves can only be determined numerically through
extensive experiments or simulations [24].

Second, given that an exact model for the cost function
is not obtainable, one might attempt to develop a simplified
approximate model and use it for analysis and optimization.
Unfortunately, such an approach is unlikely to be success-
ful because simple approximations are unable to accurately
characterize the complex impact of the URLLC preemp-
tion on eMBB performance. As an example, in [10], a
linear model was assumed for the cost function and subse-
quently, a so-called RP placement algorithm was proposed and
found to be optimal under this linear cost function. But its
actual performance under practical system settings is rather
poor (see Section IX), due to the inaccuracy of a linear
model.

Finally, one might wonder if it is possible to estimate the
cost function numerically by enumerating all possible inputs,
which include, among others, the amount of URLLC pre-
emption, MCS and SC assignment for each eMBB user, and
channel conditions across SCs. However, the input space of
this approach is prohibitively large, rendering this numerical
approach practically infeasible.

V. DEMUX: OVERVIEW

In light of discussions in the last section, it is clear that
a very different approach is needed to address the URLLC
preemption problem. In this article, we propose DEMUX—a
novel model-free DRL-based solution to this problem. In this
section, we offer an overview of the overall architecture of
DEMUX. More design details will be presented in Sections VI
and VIL

2Refer to [25] for a state-of-the-art lower bound for the error-correction
capability of LDPC, which is not in closed form.

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

A. Why DRL?

Model-free DRL is a machine learning technique that
employs deep function approximators (neural networks) to
learn an unknown optimal solution algorithm without prior
problem modeling. For addressing our URLLC preemption
problem, the most attractive feature of model-free DRL is
that it does not require an explicit cost function formula-
tion. In addition, DRL is particularly suitable for solving
problems with very large input spaces (e.g., the space of
all possible inputs for our problem). An algorithm (a neu-
ral network) learned properly through DRL can perform well
for input instances that have never been tried in the learn-
ing phase (the so-called generalization capability of neural
networks [32]). Thus, it is possible to learn an optimal algo-
rithm from a relatively small subset of input instances. Finally,
DRL is extremely versatile and can learn a wide range of com-
plex algorithms with suitable neural network structures [32].
For example, by adding more fully connected layers to a
neural network, one can generally enhance its capability of
representing more complex functions. But with more layers,
a neural network will have longer forward propagation time.
When addressing problems with real-time requirements (as our
problem), there is a design tradeoff between the function repre-
sentation capability of a neural network and its computational
time cost.

B. Architecture of DEMUX

At the beginning of each TTI, we have no knowledge
of whether or not and how many URLLC packets will
arrive among the mini-slots in this TTI. The only available
information is URLLC’s estimated arrival rate (based on online
measurements). With this limited information, the best thing
we can do is to determine a preemption solution based on
the estimated URLLC arrival rate, which will be used for all
URLLC packets that will actually arrive in this TTI. This pre-
emption solution specifies how many SCs should be preempted
in a mini-slot from each eMBB user for a URLLC transmission
(see Fig. 1). Therefore, at the beginning of each mini-slot, if a
URLLC packet is present, then its required SCs are obtained
by puncturing resources from the eMBB users following the
preemption solution for this TTL. On the other hand, if there
is no URLLC transmission in a mini-slot, then no preemption
will occur.

The goal of DEMUX is, therefore, to obtain an optimal
algorithm to compute a URLLC preemption solution for each
TTI. Suppose there exists an unknown optimal algorithm for
the URLLC preemption, denoted by m, that can minimize the
loss of eMBB utility in each TTI (under a given URLLC
arrival rate). Then, our goal for DEMUX is to find an approx-
imation u of this optimal algorithm m using a DRL-based
approach. In particular, ¢ is a deep function approximator
(neural network) with a large number of trainable parameters
within its structure. In fact, since the URLLC packet arrival
rate may change over time, we will learn a different algo-
rithm p for each different (sampled) URLLC arrival rate (see
Section VIII-C).

Table I lists notation used in this article. The architecture
of DEMUX consists of a scheduling plane and a learning

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED APPROACH TO DYNAMIC eMBB/URLLC MULTIPLEXING IN 5G NR

TABLE I
NOTATION
Symbol Definition
Ch The long-term average data rate of eMBB user n
f The translator function
g The post-processor function
K The subset size for random sampling from replay buffer
Lyrrrc | The number of SCs required by a URLLC transmission
MSC Total number of SCs on the channel
MRBG Total number of RBGs on the channel
Q The critic function approximator (neural network)
r(t) The reward function in TTI ¢
s(t) The instance of eMBB transmissions scheduled in TTI ¢
t The TTI index
U(t) The eMBB utility metric in TTI ¢
a(t) The output preemption instruction of y in TTI ¢
a(t) The preemption instruction refined by g in TTI ¢
B(t) The URLLC preemption solution in TTI ¢
~(t) The resource allocation vector for eMBB in TTI ¢
(1) The MCS selection vector for eMBB in TTI ¢
€(t) The indicator for eMBB transmission failures in TTI ¢
P The collection of trainable parameters in @
© The collection of trainable parameters in p
A URLLC packet arrival rate (in unit of arrivals/TTI)
o The deep function approximator (neural network) used for
approximating 7
s An (unknown) optimal algorithm for URLLC preemption
T = f o g o u, the overall algorithm in the scheduling plane
Learning 9 o\o | KInstances | Random
Plane N 1 sampling
Update O Store into
replay buffer
el Instance
($(0), (), r(1)) ————r(r)
Scheduling
Plane
g
§ ¢
g - ° ° ° -------------------
*|emes 2 mps(r)— o\t /e (1)

Lo 1707 Jpom(1L
H AR R : I

Approximate Ensure feasibility
algorithm

eMBB 1

Time

TTI¢

Fig. 2. Scheduling plane and learning plane in DEMUX.

plane, similar to the data plane and the control plane in
computer networks. Fig. 2 illustrates our algorithms on both
planes. The role of the learning plane is to optimize parame-
ters in p through a large number of learning steps. The role
of the scheduling plane is to use algorithm p for real-time
multiplexing of eMBB and URLLC traffic. In the learning
phase, the two planes work in a closed loop through a series
of procedures to optimize p so that it can approximate an
optimal algorithm m for the URLLC preemption. The con-
troller of the whole learning process resides at the BS. The
eMBB users only need to report their decoding results (success
or failure) to the BS, which will then use them to construct a
reward function.

Scheduling Plane: The input to this plane is a vector s(¢)
that describes the state of eMBB transmissions scheduled in
TTI ¢. s(¢) contains information of resource allocation and

6443

MCS selection for each eMBB user. The input vector s(f)
first goes through algorithm w (neural network), which pro-
duces an output vector «(¢). Since a(¢) is the unconstrained
output of a neural network, it is not guaranteed to be a fea-
sible solution for URLLC preemption. To address this issue,
we design a post-processor g and a translator f that can obtain
a feasible preemption solution B(¢) based on «(t). The pur-
pose of g is to refine a(¢) so that its output () will match
the eMBB resource allocation structure as s(¢). But a(f) may
still violate the constraints that URLLC preemption cannot
exceed resource allocation for each eMBB user. Next, we use
f to convert a () into a feasible solution 8(r) with a minimum
loss of information (based on the Kullback—Leibler (KL) diver-
gence). Entries of B(¢) indicate the proportion of SCs to be
preempted from each eMBB user. Finally, 8(r) will be used for
all URLLC transmissions scheduled in mini-slots within TTI ¢.

Denote 7 as the overall algorithm on the scheduling plane
(which takes s(f) as input and outputs preemption solution
B(1)). Then, we have 7 = f o g o u, where o represents the
composition of functions. Details for the design of & will be
presented in Section VI. As a performance measure of 7, a
reward function r(¢) is generated and sent to the learning plane.

An important requirement for the scheduling plane is that
the total processing time of = must be less than the duration
of a TTI. This is to ensure that preemption solution () can
be updated in each TTI in a real-time manner. For example,
when Numerology 1 (500-us time slot duration) is used for the
channel, the duration of a single-slot TTI is 0.5 ms. Then, the
aggregate processing time of u, g, and f must be no more than
0.5 ms. This real-time requirement is one of our key design
targets for the scheduling plane.

Learning Plane: The learning plane is inspired by the
DDPG method [27] but with our own contributions to address
the URLLC preemption problem. A fundamental issue with
using DDPG for our problem is that the learning process is
extremely slow (i.e., not converging even over half a million
iterations). To tackle this issue, we adapt the learning objective
of DDPG based on intrinsic properties of the problem and cut
down the number of deep function approximators in DDPG
from four to two, i.e., only having u and Q, where Q is a
critic neural network. In Section VII-D, we will show that the
proposed learning method is effective for our objective (i.e.,
minimizing the loss of eMBB utility in each TTI).

Our learning method has an actor—critic structure similar to
DDPG (more details in Section VII-B). The learning of the
approximate algorithm p is done with a large number of iter-
ations. In each iteration, a 3-tuple instance (s(), e (?), r(?)) is
first received from the scheduling plane. This 3-tuple instance
is stored in a replay buffer of finite capacity. When the buffer
is full, the oldest instance in it is pushed out (discarded). Then,
a subset of K random samples (s(i), ¢ (i), r(i)),i=1,..., K,
are taken from the replay buffer. These samples are first used
for updating parameters in critic neural network Q. As a key
component of the learning plane, Q is used for predicting the
expected reward 7(¢) for an instance (s(?), a (1)), i.e., the reward
one would expect to receive when u outputs e« (7) with input
eMBB instance s(#). The parameters in Q are updated by min-
imizing Zfil(r(i) — 7(i))2. After updating Q, the K samples

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

6444

are further used for updating parameters in the algorithm u.
A gradient of Q with respect to parameters in @ is computed
with the K samples. Then, the parameters in u are updated
along this gradient. After these updates, the algorithm p is
sent to the scheduling plane for the multiplexing of eMBB
and URLLC.

VI. DESIGN OF THE SCHEDULING PLANE

The overall algorithm on the scheduling plane is
7 =f ogou. This section presents how each of these three
components of 7 is designed. To ease our notation, we omit
t after TTI when there is no confusion.

A. Example

To help us understand how 7 works in each TTI, consider
the following illustrative example (not entirely conforming to
the NR standard). Suppose there is a total of 100 SCs on the
channel and the minimum resolution for resource allocation
to eMBB is 20 SCs. This means that an eMBB user if chosen
for SC allocation, can be allocated with either 20, 40, 60, 80,
or 100 SCs. It also suggests that there are at most five eMBB
users that can be chosen (from the total user pool) for SC
allocation and transmission per TTL

Suppose at the beginning of a TTI, we observe an eMBB
instance that is characterized by the following vector:

0.2 0.4 0.2 0.2 null 0.21 0.58 0.10 0.39 null
MCS selection

s =

SC allocation

where the left five elements inside the brackets represent SC
allocation for the scheduled eMBB users (up to five) and the
right five elements represent MCS selection for each eMBB
user (in terms of code rates).

The eMBB instance s is fed into the deep function approx-
imator u. Then, @ outputs an unconstrained preemption
instruction o as follows:

a =1[0.35 0.11 0.48 0 0.06].

Each element in o represents the proportion of SCs (required
by a URLLC packet) that should be preempted from an eMBB
user. All elements in & add up to one.

Apparently, « is not a feasible solution, as the fifth element
of o should be zero since there are only four eMBB transmis-
sions. To make this correction, « is sent to a post-processor g.
g first zeros out redundant entry in « (the fifth entry). Then,
a small random positive disturbance (0.02 in this example) is
added to the fourth zero entry. This operation is required by
the translator f (will be explained in Section VI-C). Finally,
g normalizes the sum of all elements to 1. The output of g,
denoted as a, is

a =[0.36 0.12 0.50 0.02 null].

But & still may not meet feasibility constraints for
the URLLC preemption. For example, suppose the current
URLLC transmission requires 50 SCs. The third element of
says that 50% of the 50 SCs (=25 SCs) should be preempted
from eMBB user 3. But eMBB user 3 is only allocated with

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

Deep function approximator y

_eMBB RBG Intermediate layers
instance _allocation Input {~77""TTTTTT
0.20 ISRE iOutput Preemption
10 N instruction
0.40 ey NO!

0.20 | ol o ! 8??
n=|: HEED \ P n=|-"
s =45 |:{>:.: g . :|:{>a() 048
0.58 o) :

0.10 10!
¥ mes T
Selection ~ TTTTTTTTTTTTTot
(code rates)
(a)
Activation A()
Neuron) o) x =A®)

l’(r—l, j-1) (—1j=1)

Neuron =~ Neuron >
1
Yi-1, j) ()
Neuron
12 = (@i.j)
=1, j+1) o Xap =AY, Wil =10 + b)
Neuron Wil1,+2) o k
Yi-1, j+2)
Layeri — 1 Layer i
(b)

Fig. 3. Deep function approximator p. (a) Layered structure of pu.
(b) Forward propagation between two adjacent layers.

20 SCs (= 100 x 20%). To address this infeasibility, ¢ is sent
to a translator f, which will produce a feasible preemption
solution B as follows:

B =10.43 0.15 0.40 0.02 null].

Then, B will be used for all URLLC transmissions in this TTI.
In the rest of this section, we elaborate on the design details
of u, g, and f.

B. Approximate Algorithm |

The approximate algorithm p in the scheduling plane is
a neural network consisting of an input layer, a number of
intermediate layers, and an output layer. An illustration of u is
given in Fig. 3. u contains a large set of trainable parameters,
which we denote as ©. These parameters are optimized by the
learning plane as illustrated in Fig. 2.

Input and Output: At the beginning of each TTI, the input
to 1 is an eMBB instance vector s, as described in the example
in Section VI-A. In general, s can be expressed as

s=[y §] (1)

where y is the normalized SC allocation vector (i.e., percent-
age of SCs allocated to each eMBB user) and § is the MCS
selection vector (i.e., MCS selection for each eMBB user). In
NR, a resource block group (RBG) is the minimum frequency
resolution for eMBB resource allocation [23]. Each RBG con-
sists of a number of contiguous resource blocks (RBs), while
an RB contains 12 contiguous SCs. Let MRBG denote the total
number of RBGs on the channel. In each TTI, an RBG can be
allocated to at most one eMBB user. Thus, the maximum num-
ber of eMBB users that can be scheduled per TTI is MREC,
For example, in Section VI-A, there are MRBG — 5 RBGs
on the channel with each RBG containing 20 SCs. To ensure
a uniform input format for each TTI, we fix the lengths of
both ¥ and § to MRBG, Thus, the size of the input vector s is

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED APPROACH TO DYNAMIC eMBB/URLLC MULTIPLEXING IN 5G NR

2MRBG, When the number of scheduled eMBB users is less
than MRBG, we can pad the unspecified elements in ¥ and §
to null (zero).

The output of u is a vector a with elements. The soft-
max function is used before the output layer .’ Then, each
element of & is a real number between 0 and 1, represent-
ing the proportion of SCs required by a URLLC transmission
that should be preempted from the corresponding eMBB user.
Denote Lyriic as the number of SCs required by a URLLC
transmission.* The sum of entries in a is equal to 1, meaning
that the number of SCs preempted from all the eMBB users
is equal to LyrLLC.

Intermediate Layers: Between the input and output layers
of n, we have a multilayer structure that is fully connected
between two adjacent layers. Such a structure can offer a
strong function approximating capability, which is what we
need for p to approximate an optimal algorithm . Under
this structure, each intermediate layer consists of a number
of “neurons.” A neuron within a layer is fully connected to
all neurons in the next layer (as shown in Fig. 3(a)). Forward
propagation from input to output between two adjacent layers
is shown in Fig. 3(b). For example, consider the jth neuron in
the ith layer of u, which we denote as v ;). Its input is the
weighted sum of output of all neurons in the (i — 1)th layer:
> ng)l’ 1 X(—1,6)> Where x(—1 k) is the output of the neuron

MRB G

V(i—14 and WE;i)L 4y 15 the weight on the connection from the
neuron v_j) to the neuron v ;. Then, the output of this
neuron is: x¢ ;) =AY, ng)l,k)x(i—l,k) +b(i j)), where b jy is
the bias of the neuron v(; j, and A(-) is a nonlinear activation
function (e.g., rectified nonlinearity). Weights ws and biases bs
are included in ® and optimized through the learning plane.

Under the real-time requirement in NR, the aggregate pro-
cessing time of u, g, and f must be no more than the duration
of a TTL. To meet this requirement, we must avoid using
too many intermediate layers in u since forward propagation
time of w increases with the number of layers. In our imple-
mentation of DEMUX in Section VIII, in order to satisfy the
requirement for NR Numerology 0 and 1 (with slot duration of
1 and 0.5 ms, respectively, most suitable for eMBB), a four-
layer structure (with two intermediate layers) is used for u
to achieve a forward propagation time of 0.276 ms with an
Intel Xeon E5-2687W v4 CPU. For NR Numerology 2 and 3
(with slot duration of 0.25 and 0.125 ms, respectively), an
additional mechanism (e.g., GPU [37]) for speedup would be
necessary.

C. Guaranteeing Feasibility With g and f

Infeasibility: An issue with approximate algorithm p is that
its output & is unconstrained and may not be a feasible solution
for the URLLC preemption (as shown in the example in
Section VI-A). Such infeasibility may come from two sources.

3For a given vector x € R”", the softmax function is defined as
softmax(x); = exi/zj'-’:] e for i = 1,2,...,n [32]. Clearly, we have
softmax(x); € (0, 1) and Z?:l softmax(x); = 1.

4LURLLC is determined by the packet size (in number of bits), the MCS
used for URLLC, and the number of OFDM symbols per mini-slot. For exam-
ple, for a 50-B packet size, QPSK modulation, LDPC with 1/3 code rate, and
two OFDM symbols per mini-slot, we have Lyrpic = 300.

6445

1) « may have nonzero elements corresponding to null
elements in y.
2) o may ask for more SCs to preempt than what the
corresponding eMBB users’ SCs can offer.
Next, we present a post-processor g and a translator f to
address these potential infeasibility issues, respectively.

Post-Processor g: The goal of the post-processor g is to
address the first infeasibility issue. To do this, g performs the
following operations on «. First, we use a mask vector of
size MRBG that has the same number of null entries as y
and ones elsewhere. We use this mask vector to nullify those
“infeasible” entries in a.

Also, if there is any entry in « that equals to zero while the
same entry in y is nonzero, we will add a very small positive
disturbance to this entry in «. This operation has minimal
impact on the final integral preemption solution but is required
by the translator f (to be explained later). Finally, we normalize
the sum of nonzero elements from the previous steps in g to 1.
Through the processing of g, we obtain a new preemption
instruction .

Translator f: But a may still be infeasible, due to the sec-
ond infeasibility issue. The goal of translator f is to address
the second infeasibility so that we can get a final feasible pre-
emption solution . Given a resource allocation vector y for
the eMBB users, a feasible 8 should ensure that the number
of SCs preempted from each eMBB user is no greater than
the total number of SCs allocated to this user. That is, 8 must
satisfy LurLrLcBn < MSCy, for each scheduled eMBB user n,
where MSC is the total number of SCs on the channel, and 8,
and y, are the nth entries of B and p, respectively. Then, we
have the following feasibility constraints:

MSC
By < yn——
LurLLc
Per our discussion about the second infeasibility issue, & (out-

put of g) may not satisfy constraints (2). That is, there might
be some entry &, with &, > y,(M3C)/(LurLLc). In fact, by
experiments, we found that such a violation is very common.
To address this infeasibility, we propose a novel translator
function f as follows.

Consider an approach where SCs are preempted from the
eMBB users randomly using 8 as a probability distribution
(instead of fixed percentages). It is easy to see that in terms
of the expected number of SCs preempted from each eMBB
user, this probabilistic approach and fixed percentage approach
are equivalent. Therefore, we can view & as a probability dis-
tribution for random preemption. Following this approach (i.e.,
treating & and B as two probability distributions), a plausible
way to construct a feasible 8 from the infeasible & is to mini-
mize the distance between the two. In this regard, we can use
the KL divergence as the measure of the distance between the
two probability distributions [28] and minimize this distance.

Denote DXL(-||-) as the KL divergence between two prob-
ability distributions. Then, the KL divergence between & and
B can be defined by’

DK @18) = 3 dntog 5. 3)

, n=1,2,...,MRBG,)

5We follow the convention that 01log(0/0) = 0, Olog(0/c) =
clog(c/0) = 400, where c is a positive constant.

0 and

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

6446

In the information theory, the KL divergence is also called the
relative entropy and is widely used for quantifying the loss of
information from one probability distribution to the other prob-
ability distribution [29], [30]. Here, we will use (3) to measure
how much information is lost if we use f to approximate c.

It is easy to show that DXL(&|) > 0. Then, the role of
the translator f is to find B that minimizes the KL divergence
with respect to & while meeting the feasibility constraints (2).
Denote * = {8}, B3, ...} as the optimal solution found by f.
To determine B*, f performs the following steps.

1) Denote NV = {n|@, =0,n=1,2,..., MRBG} ie. the
set of indices of the null elements in «. The first step
is to set B =0 for all n € \V! 0. This operation ensures
optimality with respect to the KL divergence according
to (3).

2) Denote Nt = {n|@, > 0,n=1,2,..., MRBG} ie. the
set of indices of nonzero entries in &. For all n € N'T,
we determine the optimal B's by solving the following
optimization problem:

OPT-B
minimize DXN(&||B)
SC

subject to B, < yp—m,
LyrLLC

ﬂnZOa I’ZGN+

neN+

neNt

In OPT-8, &,s and y,s are constant inputs. Due to the
masking and small positive disturbance applied to & by
the post-processor g, we have &, > 0 and y,, > 0 for all
neNt, and Zne A+ Yn = 1. Then, the optimal solution
to OPT-8 can be obtained by using Algorithm 1. The
optimality of Algorithm 1 can be proved by checking the
KKT conditions since OPT-8 is a convex optimization
problem. Algorithm 1 has a computational complexity
of O(MRBS) and requires no more than MRBG jterations
to determine B*. Although OPT-8 can be solved using
standard convex optimizers, our Algorithm 1 uses a far
fewer number of iterations and thus is more suitable for
real-time execution.

Optimal solution B* will be used for actual URLLC pre-

emption in the current TTIL.

VII. DESIGN OF THE LEARNING PLANE

The goal of the learning plane is to optimize the approxi-
mate algorithm p using a DRL-based approach. This section
presents our design of the learning plane.

A. Challenge and Proposed Approach

Currently, the most widely used DRL method to address
resource allocation problems in wireless networks is the
so-called DQL [34]-[36]. DQL was developed for problems
with discrete action space with a small number of possible
solutions. In each learning iteration, DQL attempts to find
an action that has the maximum expected return among all

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

Algorithm 1 Optimal Solution to OPT-8
1: Initialize N: = ¢, N: = NF, g = 13

2: while N # ¢ do

3: Determine N”: = {n eN

5 MSC .
@n/Y > ¥ LyrLLC }

4 if N/ =0 then _

5: for each n in A/ do

6: By = an/ v

7 end for

8 N:=0;

9 else

10: for each n in N’ _do

11: ,3:: ="Vn 7Lll}/}liiic ;

12: end for_

13: N:=N\W/;

14: N: = NUN7; e

15: vi= Yan/(1—- X yat—)
oy / wis LURLLC

16: end if

17: end while
18: return B*;

possible actions. That is, DQL requires solving a maximization
problem over a discrete action domain in each iteration.

Unfortunately, DQL cannot be used to solve our URLLC
preemption problem. The main reason is that our space of all
possible preemption solutions is prohibitively large. LyrpLc iS
typically on the order of hundreds (see footnote 3) and there
is a prohibitively large number of different ways to preempt
SCs from the eMBB users in each TTI. For example, con-
sider that there are ten eMBB users scheduled in a TTI. For a
URLLC packet requiring 300 SCs, the total number of preemp-
tion solutions is (30%1(1_1) ~ 6.3 x 10'¢ (including infeasible
solutions).® It is simply impractical to apply DQL to such an
enormous discrete action space as the computational time to
solve all the maximization problems (one for each learning
iteration) is prohibitively large.

To mitigate this problem, we employ a different approach.
Instead of using (exact) integer numbers for the SC pre-
emption from the eMBB users, as described in Section VI,
we use a vector B whose entries are fractions within [0, 1]
to indicate what proportion of SCs for a URLLC trans-
mission should be preempted from each eMBB user. Since
Lyrric is large, the space of all possible Bs is “dense.”
For instance, for Lyrirc = 300, the £2-norm gap between
two adjacent Bs (with difference of one SC allocation) is
V2(1/300)2 = 4.7 x 1073. With this level of closeness, we
can consider the space for all 8s as approximately continuous.
For any solution within this approximately continuous space,
we can easily find a feasible integral preemption action by
adjusting a small number of SCs. This prompts us to consider
the DDPG method for learning algorithm p, which turns out
to be an excellent choice for this problem. This is because
unlike DQL, DDPG was designed to address problems with
large and continuous action domains [26], [27]. In each learn-
ing iteration, instead of solving a maximization problem as
in DQL, DDPG uses a deep function approximator u to find

6Finding a solution for preempting Lyrppc SCs from N eMBB users
is equivalent to determining a nonnegative integer solution to the equation:
Z{v x; = LyrpLc- It has been shown that the total number of such solutions

is (LUR%STN*) [38, Proposition 6.2].

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED APPROACH TO DYNAMIC eMBB/URLLC MULTIPLEXING IN 5G NR

the preemption action. In the next section, we offer essential
background on DDPG, laying the foundation for our own
contributions in Section VII-D.

B. DDPG in Nutshell

DDPG is a model-free DRL method that was developed
to solve problems with high-dimensional continuous action
domains. DDPG is based on a key notion of “actor” and
“critic.” An actor is a deep function approximator that takes
an observed input instance and outputs an action. A critic is
another deep function approximator that predicts the expected
return of an action under a given input instance. The role of
the critic is to offer an approximate objective function of the
underlying optimization problem in each learning iteration.
The ultimate objective of DDPG is to obtain an optimal
actor algorithm (neural network) that is able to maximize the
expected sum of discounted rewards starting from the first
iteration, i.e., E[Zthl d’_lr(t)], where d € [0, 1] is a discount
factor and T represents the total number of iterations.

More formally, denote Q as the critic function approximator.
Q is used for predicting the following expected return in each
iteration:

T

Q(s(1), () = E[Z d=1r(i) s), a(r)]. 4)
i=t

Equation (4) is called the “action value” in DDPG. It repre-

sents the expected return of taking the action «(¢) under the

input instance s(f), assuming that the current actor algorithm

will be used for all future iterations.

The learning process of DDPG is to optimize parameters
in actor and critic neural networks through a large number of
iterations. Denote & as the set of trainable parameters in Q
(weights and biases similar to those in ®). In each iteration,
the actor takes action for a given input instance. Then, a reward
signal is received for this action. This action execution instance
is then stored in a replay buffer. Next, a subset of K stored exe-
cution instances are randomly sampled from the replay buffer.
Using these samples, the critic network Q is updated based
on received reward signals to improve its prediction accu-
racy. Then, the updated Q is used to optimize the actor. The
parameters within the actor network are updated by taking
a small step along the gradient of Q with respect to these
parameters.

To ensure the learning can converge eventually (i.e., obtain
a stable and maximized return), DDPG employs two addi-
tional neural networks, called farget networks to help stabilize
the learning of Q. Specifically, based on the Bellman equa-
tion [27], the action value in (4) can be rewritten as

0 (1), a(t)) = E[r(t) +d-O6@+1), al+ 1))’s(t), ct(t)].
(5)

The use of target networks is to approximate (substitute)
Q@@+ 1),a(t+ 1)) in (5), i.e., the action value in iteration
t+ 1. Then, the sum of the reward r(7) for the current iteration
and the action value for the next iteration predicted by target
networks (discounted by d) provides a “target” for updating
the critic network Q. By using target networks, the update of Q
in each learning iteration becomes more stable. The downside

6447

of using target networks, however, is that it slows down learn-
ing, as target networks are constrained to have a very small
update in each iteration (also known as, “soft” update using a
coefficient 7 < 1 [27]).

C. Convergence Problem

For our URLLC preemption problem, we find that if we
follow DDPG as it is, then the learning is extremely slow
to converge. In our experiments, we found that there was
no significant improvement in the objective (i.e., reducing
the loss of eMBB utility) after more than half a million
iterations. The reason behind this is that the learning for the
critic Q is too slow. The accuracy of Q for predicting the
action value in (4) does not show much improvement as the
number of learning iterations increases. Without an accurate
critic O, DDPG cannot converge in learning the algorithm
. Furthermore, the inclusion of target networks in DDPG
also slows down the learning progress since target networks
are constrained to be updated very slowly using a coefficient
7 < 1. In the next section, we present our design to mitigate
this convergence problem.

D. Our Design

Our design of the learning plane is shown in Fig. 2. It retains
an actor—critic structure similar to DDPG (with the actor being
neural network p described in Section VI-B and the critic
being another neural network Q) but with some significant
differences.

1) Based on our observation of some intrinsic properties
associated with the URLLC preemption problem, we
propose to simplify the learning objective of DDPG
and the action value that the critic Q needs to predict.
We show that these simplifications can achieve a much
faster and more stable convergence compared to original
DDPG.

2) Following the above simplifications, we propose to
remove the target networks in DDPG from our design.
This will eliminate the delay associated with target
networks but will not hamper the stability of the learning
process.

The rest of this section is organized as follows. We first
describe our design of the reward function, which serves as
an input to the learning plane. Then, we describe how to
design a learning method that can speed up convergence.
A summary of the proposed learning method is given in
Algorithm 2.

Construction of the Reward Function: The reward function
in each TTI is a component of the action value in (4) that
the critic Q needs to approximate. There are two aspects that
must be considered when constructing a reward function for
our problem.

1) The reward function must offer a critical assessment
(evaluation) for a preemption instruction «(f) in terms
of its impact on eMBB utility.

2) The reward function should include a penalty for any
infeasibility incurred in p’s output e (7).

For the first consideration (critical assessment), we need

to determine the loss of eMBB utility in a TTI due to the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

6448

05 --Normalized expected utility
. —-Proportion of RBG allocation

0.4
0.3
] °
©
=02
o 1
\
L) WIS |]
0 10 20 30 40 50 60 70 80 90 100
t(TTI)
(a)
0.5 ﬂfNormalized expected utility
—-Proportion of RBG allocation
0.4
%0.3
©
>0.2 K A ®
AT T

oLd.4 S |
0 10 20 30 40 50 60 70 80 90 100
t(TTI)

(b)

Fig. 4. Relationship between the proportion of RBGs allocated to an eMBB
user and its normalized expected PF utility. (a) eMBB user 1. (b) eMBB
user 2.

URLLC preemption. Denote U,(¢) as the utility that eMBB
user n will obtain if its received transmission in TTI 7 can
be successfully decoded. Denote U(¢) as the maximum utility
that can be achieved across all the eMBB users scheduled in
TTI ¢. Then, we have

Uty =Y Un0.

If all eMBB transmissions are successful, then the maximum
U(?) is achieved. But in the presence of URLLC preemption,
some eMBB user(s) may not be able to decode its received
signal, resulting in a loss of eMBB utility.

Denote €(¢) as an indication vector for whether or not each
scheduled eMBB transmission succeeds, i.e., for each eMBB
user n

enlt) = {(11

if transmission to eMBB user n succeeds
if transmission to eMBB user 7 fails.

Then, the normalized loss of eMBB utility in TTI ¢ is given
by >, &)U (/U (1)

Denote 7~V (r) as the reward for preserving eMBB utility in
TTI ¢, which we define as

o Un(®)
M =" e ok

n

Then, the range of Y(1) is between [—1, 0]. For example, if
all eMBB transmissions are successful, then rLU(t) = 0; if all
eMBB transmissions fail, then r*Y(r) = —1.

If we were to use this reward function, then we would have
to add additional information (U, (¢)/U(f)s) to the input of w.
This is undesirable as it requires to add more intermediate lay-
ers in wu, which will result in a longer execution time. Instead,

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

we find that we can obtain a good approximation for 7V (r) by
using information already included in the input s(#). Through
experiments, we found that the normalized expected utility
U,(t)/U(t) of an eMBB user is highly correlated with the
proportion of RBGs allocated to it, i.e., y,(¢). The reason is
that a user with a higher expected utility is more likely to
be allocated with more RBGs. This correlation has been ver-
ified by our experimental results shown in Fig. 4, where we
run a PHY-MAC NR simulator (see Section VIII-A) with PF
scheduling for ten eMBB users and show the results for the
first and second users for 100 TTIs. In Fig. 4, we can see that
¥, (¢) has a nearly perfect match to U, (¢)/U(t). Based on this
insight, we propose to use

M0 ==Y en®yalt) (6)

as a reward function. This innovative design allows us to avoid
bringing any additional input to pu.

For the second consideration (i.e., to penalize infeasibilites
in p’s output «(z)), we propose to include penalties for
both the redundant elements in () and the KL divergence
DXL (&(1)||B*(1)). That is, for redundant elements in a(r), we
introduce a penalty

REB == "). (7

neNO(r)
For the KL divergence DXL (a(r)||*(f)), we use the penalty
(1) = —D*M @) | B*(1). ®)

The goal of (7) and (8) is to reduce the distance between the
algorithm p’s output «(#) and the final feasible preemption
solution B* () through the learning process. This design helps
minimize the loss of information caused by g and f.

Putting (6)—(8) together, we construct the complete reward
function r(¢) as follows:

r(t) = wVrV) + wRERE (1) + WKL KL))

where WU, wRE and wKL are positive weights. These weights

reflect relative importance of r“U(r), rRE(r), and rXL(¢) in the
reward function r(z).

Mechanisms to Accelerate Convergence: To address the
convergence problem, we take a closer look at our URLLC
preemption problem. The objective of our problem is to mini-
mize the loss of eMBB utility due to the URLLC preemption.
To characterize eMBB utility, let us consider some of the
most-widely used schedulers for eMBB, such as PF [15]-[19],
maximum throughput (MT), and other weighted-rate-based
schedulers [18]. A common characteristic of these eMBB
schedulers is that they are mostly greedy algorithms that aim
to maximize the eMBB utility in each TTI independently.
An attractive feature of these greedy algorithms is that they
have low computational complexities and thus are suitable for
real-time execution. In this article, we consider the PF sched-
uler [15]-[18] as an example. The same design of the learning
method also applies to other greedy eMBB schedulers.

The PF scheduler is known for its ability to strike a tradeoff
between fairness and total cell throughput among the users
(i.e., avoiding starvation at cell edge). The utility function of

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED APPROACH TO DYNAMIC eMBB/URLLC MULTIPLEXING IN 5G NR

PFis:), log C,, where C,, is the long-term average data rate
of the user n. An asymptotically optimal solution to the PF
scheduling is to allocate RBGs in each TTI ¢ with the following
objective:

Ca(t)

maximize U(¥) = Z m

n

(10)

where @n(t) is the expected data rate to the user n in TTI ¢,
and C,(t — 1) is the user n’s exponentially smoothed average
data rate up to TTI (r — 1) and is updated as

Cit— 1D =0-mCa(t=2) +nCy(r — 1) 1D
where C,,(t — 1) is user n’s achieved data rate in TTI (¢ — 1),
and 7 is a small positive coefficient (e.g., 0.01). It has been
shown that this per-TTI scheduling maximizes PF utility when
t — oo [19].

For our URLLC preemption problem, to minimize the loss
of eMBB utility, it is sufficient to minimize the loss of util-
ity U(¢) in each TTIL Following the same proof for per-TTI
scheduling (10), it is easy to show that this approach is asymp-
totically optimal for minimizing the loss of eMBB utility.
Note that this property holds for the MT scheduler and other
weighted-rate-based schedulers as well. For these schedulers,
maximizing per-TTI utility metrics is globally optimal.

Now, the question to ask is: how can we exploit this property
to design a learning method? Our first observation is that the
optimization objective of the learning plane can be reduced to:
maximize E[r(¢)], i.e., only maximizing the expected reward
in each TTI without accounting for rewards in future TTIs.
As described earlier, a major component of r(¢) is the reward
for preserving the per-TTI utility U(¢). Thus, to minimize the
loss of eMBB utility, it is sufficient to maximize E[r(¢)] for
each TTIL. Then, the action value in (4) is simplified to

0(s(1), () = E[r(0)]s(0), a(0)]. (12)
These simplifications accelerate convergence on the learn-
ing plane in two aspects. First, the learning for the critic
Q becomes much easier and faster because Q is no longer
required to predict the expected return in future TTIs.
Second, there is no need to include target networks since
action value (12) only involves the expected reward in the
current TTI. Moreover, the removal of target networks will
not impact the stability of learning.

Learning Method: Algorithm 2 summarizes our proposed
learning method based on the action value in (12). For initial-
ization, parameters in neural networks p and Q are randomly
generated. Then, the memory is allocated for the replay buffer.
At the beginning of learning, an initial eMBB instance s(1)
for TTI ¢+ = 1 is received. Then, the learning process of
Algorithm 2 goes through a for loop with a total number of T
iterations (lines 4—13). In each iteration, an algorithm execu-
tion instance (s(t), (), r(¢)) is obtained from the scheduling
plane and stored in the replay buffer (lines 5-9). Then, a sub-
set of K samples are randomly selected from the replay buffer.
These samples are used for updating parameters in the critic

6449

Algorithm 2 Method for Learning Algorithm u

1: Initialize parameters (randomly) in ® and @ for algorithm p and critic
network Q, respectively;
: Initialize replay buffer;
Receive initial eMBB instance s(1);
: foreach TTIr=1,2,---,T do
Obtain preemption instruction from u: a(f) < u(s(?)|0);
Apply post-processor and obtain: a(f) < g(e(?));
Obtain preemption solution using translator: B(r) < f(a (), s(?));
Use B(t) for all URLLC transmissions within TTI ¢, receive reward
r(t), and observe new eMBB instance s(t + 1);
9 Store the result (s(#), ac(), r(¢)) into replay buffer;
10: Randomly sample a subset of K results (s(i), a(i), r(i)) from replay
buffer;
11: Update Q’s parameters in & by solving (13);
12: Update p’s parameters in © using the sample gradient (14);
13: end for
14: return Learned approximate algorithm p;

A U

network Q and the algorithm . Q is updated by solving

R G S R
minimize X ;(r(z) O@s(@), a()|P))~. (13)
An efficient implementation of (13) is to update parameters
in Q (®) by taking a small step along the gradient of the
minimization objective with respect to Q’s parameters. Note
that in (13), the update of Q is only based on rewards r(i)s
without any target network. This corresponds to our simplifi-
cation for action value in (12). After updating Q, parameters
in the algorithm p (®) are updated using the following sample
gradient (SG):

Ly 14
SG =~ ;an@, | D) ls=s(i).a=pu(s(in VoL IO s (14)
When the for loop completes, a learned algorithm p is
returned.

Stability of Learning: From (13), we can see that the
learning of action value in (12) is very similar to super-
vised learning. Theoretically, the neural network Q is used to
approximate the expected reward E[r(¢)|s(¢), a(¢)] in each TTI
t. In practical implementation, we use the reward r(f) as an
unbiased estimation for E[r(?)|s(f), e (f)]. During the learning
process, network Q is trained with tuples (s (i), « (i), (7)) for a
large number of TTIs (i.e., (13)). The goal is to have a network
Q that can precisely predict expected reward E[r(f)] given an
input instance (s(f), a(f)). Such learning of Q resembles a
supervised learning process (with a large amount of training
data (s(i), a(i), r(i))). Moreover, since the learning target for
the network Q is simply r(#) and Q is not used to calculate
the target value, our design eliminates the divergence/stability
issue in DDPG.

VIII. IMPLEMENTATION

This section presents our implementation of DEMUX in a
simulated 5G NR network environment. Our implementation
has the following two components.

1) A PHY-MAC NR simulator supporting dynamic

eMBB/URLLC multiplexing with URLLC preemption.

2) A DRL module implementing our learning method in

Section VII-D.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

6450

TABLE II
MCS LEVELS AND MEASURED WORKING SNRs (dB) UNDER BLER = 0.1

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

MCS level L2 [3] 4 s | e | 7] 8 9 | 10

Modulation QPSK 16QAM 64QAM

Code rate 010 | 021 | 033 | 042 | 029 | 039 | 049 | 058 | 0.46 | 0.55
Working SNR (dB) | -14 | 13 | 42 | 61 | 96 | 11.8 | 140 | 162 | 183 | 21.0

PHY-MAC
NR Simulator

eMBB User 1 eMBB User 1
' — .

. g Signa! 0
e —», Processing !

P Base Station i Channel

Signal

Base Station

eMBB
: Scheduler ;

: Processing |
Base Station
' 5 eMBB User 2 eMBB User 2
+eMBB Traffic . 1

EGenerator: i\ Channel E—__ﬂ Signal
............ 0 + | o+ Processing !

Mapping of
SC Preemption
URLLC !

+ Controller !

Base Station

DRL Module

Fig. 5. Implementation diagram of our NR simulator.

We employ object-oriented programming to implement both
components. Each component involves a number of classes.
Procedures within the closed-loop across scheduling and learn-
ing planes (see Fig. 2) are implemented as different methods
encapsulated in these classes. In the rest of this section, we
give details of our implementation.

A. PHY-MAC NR Simulator

Our NR simulator implements NR PHY and MAC layer
functions that are most relevant to the URLLC preemp-
tion problem. This simulator is built using MathWorks’ 5G
Toolbox [14], which offers standard-compliant signal pro-
cessing functions for 5G NR end-to-end communications,
including channel coding, modulation, OFDM modulation, and
multipath channel fading. In addition to these signal processing
functions, we implement modules to support the SC preemp-
tion for URLLC packet transmissions, simultaneous multilink
eMBB transmissions, RBG scheduling, and MCS selection
for the eMBB users, and TCP/IP socket-based communication
with the DRL module.

Fig. 5 illustrates our implementation of the NR simulator. As
shown in this figure, the NR simulator has a BS class and an
eMBB user class. The BS class contains methods for per-TTI
downlink processing procedures, including eMBB scheduling,
URLLC control, data generation, and transmitter-side signal
processing. The eMBB user class contains methods for channel
fading and noise generation and receiver-side signal process-
ing. A simulated NR cell instance consists of an object of the
BS class and multiple objects of the eMBB user class. This
characterizes multiple communication links between the BS
and the eMBB users.

The BS class has the following methods.

1y

2)

3)

eMBB Scheduler: This method schedules eMBB trans-
missions in each TTI and assigns RBGs and MCS level
for each transmission. For RBG allocation, we employ
the PF scheduler described in Section VII-D. In each
TTI, RBGs are allocated iteratively to the eMBB users
based on a copy of long-term average rates C,(f)s that
is updated after allocating each RBG as in (11). The
original C,(f)s are updated after all RBGs are allocated
in each TTI. For eMBB MCS selection, we consider ten
MCS levels given in Table II. Each MCS level requires
a minimum working SNR to ensure that the BLER is no
greater than a target threshold. The working SNRs for
0.1 BLER (typical value for eMBB) of these MCS levels
are measured through experiments using our NR simula-
tor. The measurement is done for the cluster delay line
(CDL)-C multipath channel fading with 300 ns delay
spread on 25 RBs. For each eMBB user, the BS selects
an MCS level so that the user’s average SNR is no less
than the MCS’s working SNR. This method returns an
eMBB instance vector s(¢). In particular, s(r) will be sent
to the DRL module via Gateway. The Learning Agent
will use s(¢) to produce a preemption instruction o (7)
based on the algorithm p.

URLLC Controller: This method controls URLLC trans-
missions and preemptive puncturing in each TTI. The
input to this method includes eMBB instance s(f) and
puncturing instruction e(f) from the DRL module. The
URLLC controller performs the following tasks. First,
it obtains a feasible preemption solution B(f) = (f o
g)(a(r)) using g and f as described in Section VI-C.
Second, URLLC packets are generated using a Poisson
process with arrival rate A (arrivals/TTI). A is a con-
figurable parameter of the simulator. Arrived URLLC
packets are stored in a first-in—first-out buffer. Third,
each URLLC packet is scheduled to transmit in the
earliest available mini-slot after its arrival. In each mini-
slot, at most one URLLC packet is transmitted. Fourth,
the preemption of SCs for each URLLC transmission is
determined based on the solution f(). As discussed in
Section II, the preemption on each eMBB transmission
proceeds from the SC with the lowest index that is allo-
cated to it. Finally, a frequency-time resource mapping
for preemption is generated, which indicates OFDM
symbols and SCs that are punctured by URLLC in the
current TTI. The preemption mapping is returned as the
output of this method.

eMBB Traffic Generator: This method generates data
bits for scheduled eMBB transmissions. For an eMBB

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED APPROACH TO DYNAMIC eMBB/URLLC MULTIPLEXING IN 5G NR

transmission, the number of data bits within its trans-
port block (TB) depends on the number of allocated
RBGs and assigned MCS level. In general, a TB con-
tains more data bits with more RBGs and a higher MCS
level. The data bits within each TB are first generated
as a random binary sequence. Then, cyclic redundancy
check (CRC) bits are computed and attached to TBs.
These CRC bits will be used for checking whether each
eMBB transmission succeeds.

4) Transmitter-Side Signal Processing: This method imple-
ments the downlink signal processing chain at the BS.
Input to this method includes eMBB instance s(t), pre-
emption mapping from the URLLC controller method
and TBs generated by the eMBB traffic generator. The
processing procedures include LDPC encoding, rate
matching, scrambling, modulation (QPSK, 16QAM, or
64QAM), resource preemption, and OFDM modula-
tion. After modulation, eMBB symbols on preempted
resources are flushed out according to the preemption
mapping. In each TTI, this method processes TBs for
all scheduled eMBB transmissions.

The eMBB user class has the following methods.

1) Channel: This method generates frequency and time
domain channel fading and noise for an eMBB trans-
mission. It is called by an eMBB user object before
user-side signal processing. Input to this method is
an eMBB transmission after BS-side signal processing.
Practical multipath channel fading models, such as the
CDL model and the tap delay line (TDL) model [13]
are employed in this method.

2) Receiver-Side Signal Processing: This method imple-
ments a signal processing chain at the eMBB user side.
The input to this method includes s(¢), preemption map-
ping, and returned eMBB transmission from the chan-
nel method. The processing procedures include OFDM
demodulation, soft demodulation, preemption flushing,
descrambling, rate recovery, and LDPC decoding. The
operation of preemption flushing is to nullify corrupted
bits after soft demodulation according to the preemption
mapping. This operation prevents error propagation dur-
ing LDPC decoding. After decoding, the CRC checks
results indicate whether each eMBB transmission is
successful.

B. DRL Module

We implement the DRL module using TensorFlow version
1.13.1 [31]. The DRL module involves a Gateway class and a
Learning Agent class. The Gateway class offers a communica-
tion interface between the NR simulator and the DRL module
using TCP/IP socket. During our experiment, the transfer of
eMBB instance s(¢) and reward r(f) from the NR simulator
to the DRL module and the transfer of preemption instruction
a(t) from the DRL module to the NR simulator all go through
an object of this class.

The Learning Agent class implements our learning method
in Section VII-D. Both neural networks u and Q are contained
in this class. Tasks for this class include: 1) learning p using

6451

Algorithm 2 and 2) executing learned p with the input instance
s(t) received via Gateway. It has the following methods.

1) Model Setup: This method sets up the neural networks
u and Q, optimizers used for updating parameters in u
and Q, and replay buffer for storing algorithm execution
instances. The input to this method is a configuration
profile specifying the numbers of layers and neurons
per layer, nonlinearity for each neuron, input and output
formats for networks © and Q, and other configuration
settings. The optimizers for Q and u first compute gra-
dients of Q with respect to parameters in ® and &,
respectively, and then update the parameters in Q and u
along the gradients.

2) Learner: This method implements Algorithm 2 for
learning algorithm p. We employ a very flexible imple-
mentation of the learning method. In each learning
iteration, the algorithm p is executed for a number
of consecutive TTIs. Then, the parameters in Q and
u are updated multiple times using different subsets
of samples. Settings in this implementation (i.e., how
many algorithm executions and parameter updates per
iteration) can be tuned through the experiment to achieve
an optimized learning performance.

3) Actor: This method takes an eMBB instance s(¢) as input
(obtained via Gateway) and uses learned algorithm p to
produce a preemption instruction e (), which is then sent
to the NR simulator through Gateway.

C. Putting Our Implementation to Work

We now describe how to use our NR simulator and DRL
module for learning algorithm p. The first step is to set up an
experiment instance consisting of an object of the BS class,
a number of objects of the eMBB user class, an object of
the Gateway class, and an object of the Learning Agent class.
Since in each TTI at most MRBG eMBB users can be scheduled
(see Section VI-B), we only need to generate MRBG eMBB
user objects in the experiment instance. To fully explore the
space of all possible eMBB instances s(¢)s, we randomly allo-
cate RBGs on the channel to the eMBB users in each TTI. The
MCS level for each eMBB user is also randomly selected from
Table II with average received SNRs equal to working SNRs of
the selected MCS levels. Thus, every possible eMBB instance
s(7) has the same probability to appear during learning, leading
to a full exploration of input space for wu.

Then, we run the learning process shown in Fig. 2 for T
iterations (e.g., on the order of 10° or higher). During learn-
ing, we turn off multipath channel fading and noise effects in
the NR simulator (in eMBB user objects). The reason is that
with fading and noise, an eMBB transmission could fail even
without the URLLC preemption, making it hard to deduce
whether or not a transmission failure is due to the underly-
ing preemption solution. Our experiment results in Section IX
show that algorithms learned under this approach perform well
in all network scenarios when different channel fading models
are present.

Another issue for learning is that with the Poisson packet
arrivals, the number of URLLC transmissions in each TTI is a

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

6452

TABLE III
KEY PARAMETER SETTINGS IN THE NR SIMULATOR

NR numerology Numerology 1 (30 kHz SC spacing)
20 MHz (50 RBs in total, 5 RBs/RBG)
4 GHz

1000 m

1 TTI = 1 time slot (14 OFDM symbols)
Full buffer traffic model

System bandwidth

Carrier frequency

Cell radius

eMBB config.

1 mini-slot = 2 OFDM symbols

URLLC config. Poisson arrival of 50-byte packets

CDL-C/TDL-C with

Fading channel 300 ns RMS delay spread [13]

Pathloss model 3D UMa NLOS [13]

Channel estimation | Ideal channel estimation

1 Tx antenna and 1 Rx antenna
46 dBm
-91.9 dBm

Antenna config.

BS Tx power

Noise floor

random number between zero and the number of mini-slots per
time slot. Thus, eMBB transmission failure not only depends
on the preemption solution B(¢) but also on the number of
URLLC transmissions in a TTIL. This again makes it difficult
to learn the quality of a preemption solution. We propose the
following approach to addressing this issue. In realistic cells,
the URLLC packet arrival rate A always has a finite range.
Assume that there are N mini-slots per TTI. The BS should
perform proper URLLC traffic control to prevent overflow of
URLLC packets, e.g., ensure that no more than N packets will
arrive in each TTI. Then, the range of A is [0, N]. Based on
this knowledge, one can uniformly sample a set of discrete
arrival rates from [0, N] (e.g., {1,2, ..., N}) and learn a sepa-
rate actor network p offline under each sampled arrival rate. In
the learning phase, we fix the number of URLLC transmissions
in each TTI to the given arrival rate. Since each network pu is
trained under a given known arrival rate, it does not need to
learn the packet arriving pattern. The sole objective of learning
is to let o approximate the optimal puncturing solution under
the given arrival rate.

During cell operating time, the first task for the BS is to
estimate the URLLC packet arrival rate empirically from the
data collected in the cell. This estimation can be done through
statistical methods and is independent of the learning of actor
networks ps. Then, the BS scheduler can choose a network
u (learned under a known arrival rate) that is closest to the
cell’s actual URLLC traffic condition. The chosen network
will perform well if it matches the estimated arrival rate.

Therefore, we do not need to explicitly include the arrival
rate into the input layer of the network p since a separate
network is learned under a given arrival rate. Moreover, there
is no need to include the arrival rate in the reward function.

IX. VALIDATION

This section validates the performance of DEMUX based on
our implementation in Section VIII. All experiments are done
on a Dell desktop computer with an Intel Xeon E5-2687W v4
CPU (3.0 GHz).

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

A. Experimental Settings

NR Simulator: We use our NR simulator to set up a down-
link NR cell environment with a BS, a number of eMBB users,
and a given URLLC traffic load. The key parameter settings
of the cell environment are given in Table III.

All eMBB users are uniformly and randomly distributed
within the cell’s coverage. The Poisson URLLC packet arrival
rate is chosen from {2, 3,4, 5, 6}. For eMBB PF scheduling,
the coefficient n used for updating long-term average rates
C,(t)s in (11) is set to 0.01. The MCS level for each eMBB
user is selected by finding the highest level in Table II that can
be supported by the user’s average received SNR. The MCS
selection vector §(¢) is set to code rates of eMBB transmis-
sions. This ensures all entries of the vector s(f) (u’s input)
are within [0, 1]. We employ QPSK modulation with a 1/3
code rate for URLLC transmissions [4]. Under this settings,
we have LyrrLc = 300. All eMBB and URLLC transmis-
sions are with single transmit and receive antenna and one
code word.

We consider two multipath channel fading models—TDL
and CDL, that are widely used for link-level simulations. TDL
involves power, delay, and the Doppler spectrum information
for each multipath channel tap. CDL is a spatial extension of
TDL that includes more detailed information such as angle for
each cluster of channel taps.

DRL Module: For the actor neural network w, we employ
a feedforward neural network with two fully connected
intermediate layers each with 256 neurons. The rectified non-
linearity is used as the activation function for intermediate
layers. The input layer is the eMBB instance vector s(f) of
size 2MRBG A softmax function is used before the output
layer a () to ensure that the sum of entries in «(#) equals to
one. To ensure a broader exploration of the action space, we
add a small random noise to e (¢). This action noise is assumed
to have the Gaussian distribution with zero mean and a stan-
dard deviation of 0.02. Then, all entries in «(¢) are clipped to
ensure they are within [0, 1] and normalized afterward.

The critic network Q is also a feedforward neural network
with the same intermediate layer structure and activation as
u. The eMBB instance vector s(¢) is the input to the first
intermediate layer. The output «(f) of p is an additional
input to the second intermediate layer. Q’s output is a sin-
gle unconstrained neuron that predicts the action value. We
use the Adam algorithm [33] for learning parameters in Q
and p with a learning rate of 1073 per iteration. A subset size
K = 128 for random sampling and replay buffer size of 103 are
employed.

B. Benchmark Comparison

For performance comparison, we implement two other
state-of-the-art URLLC preemption schemes on the same NR
simulator platform. The first is the RP algorithm proposed
in [10]. For each URLLC transmission, RP preempts SCs from
each eMBB user in proportion to its RBG allocation, i.e., the
preemption solution is ,BRP (t) = y(¢). It was shown in [10] that

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED APPROACH TO DYNAMIC eMBB/URLLC MULTIPLEXING IN 5G NR

0 A=2
o1/ ~A=3
L_1 =
H S
D:-3 \
[0})\=5
o-4
-5 , Na-6
>
<-6

7 L

-O 5 10 15 20 25 30 35 40
Training Step (x104)

o T T =2
D1]
c-3 AR 1
S-4 A=4 b
©
g-5 ~\=5 1
<_6\,_\W~\

S A=6

o

5 10 15 20 25 30 35 40
Training Step (x104)
(b)

Fig. 6. Learning curves of (a) DEMUX and (b) original DDPG under
different URLLC packet arrival rates.

RP is optimal if the cost function of the URLLC preemption
is linear.”

The second benchmark scheme is FFP that was proposed in
3GPP standards body [8], [9]. This scheme divides the channel
bandwidth into multiple nonoverlapping and fixed frequency
parts. All URLLC packets are transmitted using one speci-
fied frequency part. Under our setting MSC/Lyriic = 2, the
channel bandwidth is divided into two parts and all URLLC
transmissions will use the first part.

C. Results

Convergence of Learning: We use our implementation in
Section VIII to learn an algorithm p for each URLLC arrival
rate A € {2, 3,4, 5, 6}. Weights for the three components in the
reward function (9) are set to wtU =10, wRE = 3, and WKL =
5. Other settings are also possible while w™V should generally
be greater than wRE and wXl due to the significance of Y (r)
in the reward function. Fig. 6(a) shows the learning curves of
DEMUX over 4 x 10° steps under different arrival rates. Each
point on a curve represents the reward value averaged over
the past 100 TTIs. We can see that the learning processes of
DEMUX converge very quickly and smoothly within 5 x 10%.

As a comparison, Fig. 6(b) shows the learning curves of
the original DDPG (refer to Section VII-B) under the same
reward function setting (WLU = 10, wRE = 3, and WKL = 5).
In contrast to DEMUX, the learning curves of DDPG do not
converge even after 4 x 10° steps and the average rewards
fluctuate significantly as the number of steps increases. As we
pointed out in Section VII-C, the main reason is that DDPG

7Anand et al. [10] also proposed an algorithm for convex cost function.
But this algorithm requires an explicit closed-form cost function, which is not
available in practice.

6453

600
500
2 400
8300
=
3200
100

0 1 2 3 4 5 6 7
Mini-slot

Fig. 7. Example of URLLC preemption by DEMUX. Resources allocated
to each eMBB user are represented by a different color. Resources preempted
by URLLC are in white blank.

8 #DEMUX ©RP AFFP)
> 4
= 0
5
W -4
o
-8
-12
2 3 4 5 6
A (arrivals/TTI)
(a)
8 &#DEMUX ©RP AFFP
> 4
= 0
5
w -4
o
-8
-12

N

3 4 5 6
A (arrivals/TTI)
(b)

Fig. 8. Sum of utility comparison for ten eMBB users under (a) CDL and
(b) TDL channel models.

cannot effectively learn an accurate critic Q for our URLLC
preemption problem.

Comparison of Performance Objectives: In the following
experiments, we compare the performance of DEMUX, RP,
and FFP. We consider two performance objectives.

1) eMBB Users’ Sum PF Utility: Y, log C,, which is
our optimization objective (i.e., minimizing the loss of
eMBB PF utility).

2) eMBB Cell Throughput:), C,, which is an important
performance metric that is of major concern to cellular
operators.

We show results for 10 and 30 eMBB users, which are typi-
cally used for performance evaluation in 3GPP standards body
(e.g., [2, Table 6.1.2-1] for dense urban scenario).

10 eMBB Users: We first run experiments with ten eMBB
users under different URLLC traffic loads and channel fading
models. Each preemption scheme (DEMUX, RP, or FFP) is
executed for 10* consecutive TTIs under a given URLLC
arrival rate A € {2, 3,4, 5, 6} and a fading model.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

6454

/S)
S

" [@DEMUX-©RP ~FFP

Mb
N

20

Throughput (

A (arrivals/TTI)
(a)

& DEMUX ©RP AFFP|

Mb/
N

20

Throughput (

A (arrivals/TTI)
(b)

Fig. 9. Cell throughput comparison for ten eMBB users under (a) CDL and
(b) TDL channel models.

To understand how URLLC preemption works, in Fig. 7, we
provide a live example. Following Table III, a mini-slot con-
tains two OFDM symbols and a time slot consists of seven
mini-slots. As shown in Fig. 7, there are eight eMBB transmis-
sions scheduled (out of ten users) in this TTI. The numbers
of SCs allocated to the eight eMBB users are 60, 60, 120,
60, 60, 60, 120, and 60, respectively. There are two URLLC
transmissions occurring at the 3rd and 6th mini-slots, respec-
tively. Under DEMUX, the numbers of SCs preempted from
the eight eMBB users are 43, 37, 66, 9, 8, 15, 96, and 26,
respectively. In contrast (not shown in Fig. 7), FFP preempts
SCs from 0 to 300 while for RP, the numbers of SCs pre-
empted from the eight eMBB users are 30, 30, 60, 30, 30, 30,
60, and 30, respectively.

In Fig. 8(a) and (b), we compare the sum eMBB utility
3, log C,) achieved by the three schemes under CDL and
TDL channel fading models, respectively. As expected, the
sum utility decreases as the URLLC arrival rate increases
under each scheme. Among the three schemes, DEMUX offers
the best performance. When URLLC traffic load is low (A = 2
and 3), the performance of DEMUX and RP is comparable but
still better than FFP. The performance gap between DEMUX
and the other two schemes widens when the URLLC traffic
load increases.

Fig. 9(a) and (b) shows the eMBB cell throughput
(Zn C,) achieved by the three schemes under CDL and
TDL fading models, respectively. Again, DEMUX has the
best performance among the three and the performance gap
between DEMUX and the other two schemes widens as arrival
rate increases. Specifically, the largest performance gains of
DEMUX over FFP are 76% under CDL and 81% under TDL
(when A = 5), respectively. The largest gains of DEMUX over
RP are 157% under CDL and 131% under TDL (when A = 6),
respectively.

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

&DEMUX ©RP £FFP

PF Utility

A (arrivals/TTI)
(a)
#DEMUX ©RP AFFP

PF Utility

A (arrivals/TTI)
(b)

Fig. 10. Sum of utility comparison for 30 eMBB users under (a) CDL and
(b) TDL channel models.

30 eMBB Users: Next, we run experiments with 30 eMBB
users under the same settings. Fig. 10(a) and (b) shows the
sum eMBB utility achieved by DEMUX, RP, and FFP under
CDL and TDL fading models, respectively. We can see that
DEMUX outperforms the other two schemes under all URLLC
traffic loads and fading models.

The total cell throughput performance of the three schemes
under CDL and TDL fading models is shown in Fig. 11(a)
and (b), respectively. Again, DEMUX achieves the highest
throughput among the three. In particular, the largest gains of
DEMUX over RP are 75% under CDL and 121% under TDL
(when A = 6), respectively. The largest gains of DEMUX over
FFP are 27% under CDL and 21% under TDL (when A = 4),
respectively.

The fundamental reason that DEMUX can outperform RP
and FFP is that DEMUX is designed to learn an optimal solu-
tion to the URLLC preemption problem, while RP and FFP
are heuristics that one could only hope to find “good” solu-
tions. Our results presented above demonstrate that DEMUX
can successfully accomplish its goal and achieve superior
performance than RP and FFP.

Computation Time: To check whether or not DEMUX can
meet the requirement for real-time scheduling, it is only
necessary to examine its execution time on the scheduling
plane, which consists of the forward propagation time of
neural network w, and computation time of post-processor g
and translator f. The execution time of DEMUX is evalu-
ated using an Intel Xeon E5-2687W v4 CPU and the results
are shown in Table IV. First, we find that our CPU-based
implementation of DEMUX meets the real-time requirement
under NR Numerology 0 and 1, where time slot duration is
1 and 0.5 ms, respectively. For Numerology 2 and 3 with

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEEP-REINFORCEMENT-LEARNING-BASED APPROACH TO DYNAMIC eMBB/URLLC MULTIPLEXING IN 5G NR

#DEMUX ©RP AFFP

A (arrivals/TTI)

(a)

530 #DEMUX ©RP AFFP
O]
S 25

=20

215

e

10

© 5

e

=)

A (arrivals/TTI)
(b)

Fig. 11. Cell throughput comparison for 30 eMBB users under (a) CDL and
(b) TDL channel models.

TABLE IV
COMPUTATION TIME OF DEMUX. RESULTS ARE
AVERAGED OVER 10° TTIs

of eMBB users g (ms) fog (ms) Total (ms)
10 0.276 0.088 0.364
30 0.269 0.092 0.361

even shorter time slot duration (250 and 125 us), one could
employ GPU-based implementation (e.g., the cuDNN platform
from NVIDIA [37]) to accelerate forward propagation of neu-
ral network p. Second, we find that the computation time of
DEMUX does not increase as the number of eMBB users
grows. The reasons are that: 1) forward propagation time of
only depends on the numbers of layers and neurons per layer
in its structure and 2) execution time of g and f is determined
by the maximum number of eMBB users that can be scheduled
per TTI (i.e., MRBG) and is independent of the total number
of users in the cell.

X. CONCLUSION

In this article, we investigated dynamic eMBB/URLLC
multiplexing via a preemptive puncturing mechanism that
was proposed in 3GPP standards body. We studied an
important optimization problem under this mechanism on
how to spread SCs preempted by each URLLC transmis-
sion across the eMBB users so that the adverse impact
on eMBB is minimized. A major technical challenge is
that this problem cannot be solved using traditional model-
based optimization approaches. To address this challenge,
we proposed DEMUX—a novel model-free DRL-based solu-
tion. Key contributions in the design of DEMUX include the
following.

6455

1) DEMUX is able to learn an optimal algorithm for
URLLC preemption using deep function approxima-
tors without the need for a prior explicit problem
formulation.

2) DEMUX is the first known design that employs the DRL
method with a large and continuous action domain for
enabling dynamic eMBB/URLLC multiplexing.

3) To achieve fast and stable convergence of learning, we
proposed to augment the DDPG method by adapting
the learning objective and removing additional target
networks based on intrinsic properties of the URLLC
preemption problem.

4) To ensure feasibility, we proposed a novel approach
based on the KL divergence to converting an uncon-
strained output of a neural network into a feasible
URLLC preemption solution.

5) For implementation, we built an experiment platform
consisting of a PHY-MAC NR simulator and a DRL
learning module with a scalable object-oriented design
that can be used for validating the performance of
DEMUX and other benchmark schemes.

6) Through extensive experiments using our platform, we
showed that DEMUX significantly outperforms heuristic
algorithms proposed in the 3GPP standards body and the
literature (up to 130% performance gain in test network
scenarios). Furthermore, we showed that DEMUX meets
the timing requirement for real-time scheduling in NR.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their feedback.

REFERENCES

[1] Qualcomm. (2018). Making 5G NR a Commercial Reality. [Online].
Available: https://www.qualcomm.com/media/documents/files/the-3gpp-
release-15-5g-nr-design.pdf

[2] “Study on scenarios and requirements for next generation access
technologies, version 15.0.0,” 3GPP, Sophia Antipolis, France,
Rep. TR 38.913, 2018. [Online]. Available: https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx ?specification
1d=2996

[3] “Minimum requirements related to technical performance for IMT-
2020 radio interface(s),” ITU, Geneva, Switzerland, Rep. M.2410-0,
2017. [Online]. Available: https://www.itu.int/dms_pub/itu-r/opb/rep/R-
REP-M.2410-2017-PDF-E.pdf

[4] “Study on physical layer enhancements for NR ultra-reliable and
low latency case (URLLC), version 16.0.0,” 3GPP, Sophia Antipolis,
France, Rep. TR 38.824, 2019. [Online]. Available: https://portal.
3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationld=3498

[5] “Study on new radio access technology; radio interface protocol aspects,
version 14.0.0,” 3GPP, Sophia Antipolis, France, Rep. TR 38.804,
2017. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx ?specificationld=3070

[6] (Feb. 2017). Final Report of 3GPP TSG RAN WGI Meeting
#88 Version 1.0.0, Athens, Greece. [Online]. Available:
https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_88/Report/

[7]1 C.P.Li,J. Jiang, W. Chen, T. Ji, and J. Smee, “5G ultra-reliable and low-
latency systems design,” in Proc. Eur. Conf. Netw. Commun. (EuCNC),
Jun. 2017, pp. 1-5.

[8] (Nov/Dec. 2017). Final Report of 3GPP TSG RAN WGI
Meeting #91 Version 1.0.0, Reno, NV, USA. [Online]. Available:
https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_91/Report/

[9] HiSilicon: Remaining Aspects on Pre-Emption Indication for DL

Multiplexing of URLLC and eMBB, document 3GPP TSG RAN WGl

Meeting #91, R1-1721452, Huawei, Reno, NV, USA, Nov./Dec. 2017.

A. Anand, G. De Veciana, and S. Shakkottai, “Joint scheduling of

URLLC and eMBB traffic in 5G wireless networks,” in Proc. IEEE

INFOCOM, Honolulu, HI, USA, Apr. 2018, pp. 1970-1978.

[10]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

6456

[11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27])

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]

[38]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:09:26 UTC from IEEE Xplore. Restrictions apply.

A. K. Bairagi, M. S. Munir, M. Alsenwi, N. H. Tran, and C. S. Hong,
“A matching based coexistence mechanism between eMBB and uRLLC
in 5G wireless networks,” in Proc. ACM/SIGAPP Symp. Appl. Comput.
(SAC), Limassol, Cyprus, Apr. 2019, pp. 2377-2384.

J. Zhang, X. Xu, K. Zhang, B. Zhang, X. Tao, and P. Zhang,
“Machine learning based flexible transmission time interval schedul-
ing for eMBB and uRLLC coexistence scenario,” IEEE Access, vol. 7,
pp. 65811-65820, 2019.

“Study on channel model for frequencies from 0.5 to 100 GHz,
version 15.0.0,” 3GPP, Sophia Antipolis, France, Rep. TR 38.901,
2018. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx ?specificationld=3173
MathWorks. (2019). 5G Toolbox Documentation. [Online]. Available:
https://www.mathworks.com/help/5g/

D. Tse, “Multiuser diversity in wireless networks: Smart schedul-
ing, dumb antennas and epidemic communication,” in Proc. IMA
Workshop Wireless Netw., 2001. [Online]. Available: https://web.
stanford.edu/ dntse/papers/ima810.pdf

S. B. Lee, S. Choudhury, A. Khoshnevis, S. Xu, and S. Lu, “Downlink
MIMO with frequency-domain packet scheduling for 3GPP LTE,” in
Proc. IEEE INFOCOM, Apr. 2009, pp. 1269-1277.

Y. Huang, S. Li, Y. T. Hou, and W. Lou, “GPF: A GPU-based design
to achieve ~100 us scheduling for 5G NR,” in Proc. ACM MobiCom,
Oct./Nov. 2018, pp. 207-222.

F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda,
“Downlink packet scheduling in LTE cellular networks: Key design
issues and a survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 2,
pp. 678-700, 2nd Quart., 2013.

A. Stolyar, “On the asymptotic optimality of the gradient scheduling
algorithm for multi-user throughput allocation,” Oper. Res., vol. 53,
pp. 12-25, Feb. 2005.

NR; Physical Channels and Modulation, Version 15.5.0, 3GPP
Standard TS 38.211, 2019. [Online]. Available: https://portal.
3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationld=3213

NR; Multiplexing and Channel Coding, Version 15.5.0, 3GPP
Standard TS 38.212, 2019. [Online]. Available: https:/portal.
3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationld=3214

NR; Physical Layer Procedures for Control, Version 15.5.0, 3GPP
Standard TS 38.213, 2019. [Online]. Available: https://portal.
3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationld=3215

NR; Physical Layer Procedures for Data, Version 15.5.0, 3GPP
Standard TS 38.214, 2019. [Online]. Available: https:/portal.
3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationld=3216

T. Richardson and S. Kudekar, “Design of low-density parity check
codes for 5G new radio,” IEEE Commun. Mag., vol. 56, no. 3, pp. 28-34,
Mar. 2018.

P. S. Rybin, “On the error-correcting capabilities of low-complexity
decoded irregular LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun./Jul. 2014, pp. 3165-3169.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach.
Learn., 2014, pp. 387-395.

T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., 2019.

S. Kullback and R. A. Leibler, “On information and sufficiency,”
Ann. Math. Stat., vol. 22, no. 1, pp. 79-86, 1951.

M. Xie, J. Hu, S. Guo, and A. Y. Zomaya, “Distributed segment-based
anomaly detection with Kullback—Leibler divergence in wireless sen-
sor networks,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 1,
pp. 101-110, Jan. 2017.

Y. Bu, S. Zou, Y. Liang, and V. V. Veeravalli, “Estimation of KL diver-
gence: Optimal minimax rate,” IEEE Trans. Inf. Theory, vol. 64, no. 4,
pp. 2648-2674, Apr. 2018.

M. Abadi et al, “TensorFlow: Large-scale machine learning
on heterogeneous distributed systems,” 2016. [Online]. Available:
arXiv:1603.04467.

I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015.

O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for
distributed dynamic spectrum access,” IEEE Trans. Wireless Commun.,
vol. 18, no. 1, pp. 310-323, Jan. 2019.

T. He, N. Zhao, and H. Yin, “Integrated networking, caching and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44-55, Jan. 2018.

J. Zhu, Y. Song, D. Jiang, and H. Song, “A new deep-Q-learning-based
transmission scheduling mechanism for the cognitive Internet of Things,”
IEEE Internet Things J., vol. 5, no. 4, pp. 2375-2385, Aug. 2018.
NVIDIA. (2019). cuDNN Developer Guide V7.6.3. [Online].
Available: https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-
guide/index.html

S. Ross, A First Course in Probability, Chapter 1, 8th ed. London, U.K.:
Pearson, 2009.

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

Yan Huang (Student Member, IEEE) received
the B.S. and M.S. degrees in electrical engi-
neering from Beijing University of Posts and
Telecommunications, Beijing, China, in 2012 and
2015, respectively. He is currently pursuing the
Ph.D. degree with Virginia Tech, Blacksburg, VA,
USA.

His research interests are GPU-based real-time
optimizations for wireless networks and machine
learning for communications.

Shaoran Li (Student Member, IEEE) received the
B.S. degree from Southeast University, Nanjing,
China, in 2014, and the M.S. degree from Beijing
University of Posts and Telecommunications,
Beijing, China, in 2017. He is currently pursuing
the Ph.D. degree with Virginia Tech, Blacksburg,
VA, USA.

His research interests include algorithm design
and implementation for wireless networks.

Chengzhang Li (Student Member, IEEE) received
the B.S. degree in electronics engineering from
Tsinghua University, Beijing, China, in 2017. He is
currently pursuing the Ph.D. degree with the Bradley
Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, USA.

His current research interests are modeling, analy-
sis, and algorithm design for wireless networks, with
a focus on age of information and latency research.

Y. Thomas Hou (Fellow, IEEE) received the
Ph.D. degree from the NYU Tandon School of
Engineering, New York, NY, USA, in 1998.

In 2002, he joined Virginia Tech, Blacksburg,
VA, USA, where he is a Bradley Distinguished
Professor of electrical and computer engineering.
From 1997 to 2002, he was a member of research
staff with the Fujitsu Laboratories of America,
Sunnyvale, CA, USA. He has over 300 papers pub-
lished in IEEE/ACM journals and conferences. He
has authored/coauthored two graduate textbooks:
Applied Optimization Methods for Wireless Networks (Cambridge University
Press, 2014) and Cognitive Radio Communications and Networks: Principles
and Practices (Academic Press/Elsevier, 2009). He holds five U.S. patents.
His current research focuses on developing innovative solutions to complex
science and engineering problems arising from wireless and mobile networks
and wireless security.

Prof. Hou received eight best paper awards from IEEE and ACM. He
was/is on the editorial boards of a number of IEEE and ACM transac-
tions and journals. He served as the Steering Committee Chair for IEEE
INFOCOM Conference. He was also a Distinguished Lecturer of the IEEE
Communications Society. He was a member of the IEEE Communications
Society Board of Governors. He was named an IEEE Fellow for contributions
to modeling and optimization of wireless networks.

Wenjing Lou (Fellow, IEEE) received the Ph.D.
degree in electrical and computer engineering from
the University of Florida, Gainesville, FL, USA.
He is the W. C. English Endowed Professor of
computer science with Virginia Tech, Blacksburg,
VA, USA. Her research interests cover many topics
in the cybersecurity field, with her current research
interest focusing on blockchain, privacy protection
in machine learning systems, and security and pri-
vacy problems in the Internet-of-Things systems.
Prof. Lou received the Virginia Tech Alumni
Award for Research Excellence in 2018, which is the highest university
level faculty research award. She received the INFOCOM Test-of-Time Paper
Award in 2020. She is a Highly Cited Researcher by the Web of Science
Group. She is a TPC Chair for IEEE INFOCOM 2020 and ACM WiSec
2020. She is the Steering Committee Chair of IEEE CNS conference series
and the Steering committee Member of IEEE INFOCOM Conference and the
IEEE TRANSACTIONS ON MOBILE COMPUTING. She served as a Program
Director with the U.S. National Science Foundation from 2014 to 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

