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Abstract—Hybrid beamforming (HB) architecture has been widely considered for 5G mmWave systems. It reduces hardware
complexity by allowing the number of RF chains to be far fewer than the number of antennas. A major practical challenge for HB is to
obtain a beamforming solution in real-time. In 5G NR, new frame structures with short TTls are employed to support mmWave
communications. Under such frame structures, it is necessary to obtain a beamforming solution with a time resolution varying from

1 ms to 125 us — an extremely stringent time requirement considering the complexity involved in HB. In this paper, we present the
design and implementation of Turbo-HB — a novel beamforming design under the HB architecture that is capable of offering the
beamforming matrices in less than 500 ps. The key ideas of Turbo-HB include: (i) reducing the complexity of computation-intensive
SVD operations by exploiting channel sparsity at mmWave frequencies, and (ii) achieving large-scale parallel computation with minimal
memory access. We implement Turbo-HB on an off-the-shelf Nvidia GPU and conduct extensive experiments. Our experimental results
demonstrate that Turbo-HB can obtain a beamforming solution in 500 ps for up to 100 RBs and 10 MU-MIMO users on each RB while
offering competitive throughput performance compared to state-of-the-art (non-real-time) algorithms.

Index Terms—mmWave, hybrid beamforming, MIMO, real-time, GPU
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1 INTRODUCTION

( j OMMUNICATION over mmWave frequencies is defining
a new era of wireless communication, including the
most recent cellular systems such as 5G NR [2], [3]. At

RF Chain

mmWave frequencies, a base station (BS) typically needs to — 2
employ hundreds or more antennas to overcome the large blnr -

path-loss fading. However, it is difficult to apply a dedicated K7 INs: el

RF chain for each antenna as traditional MIMO under 6 GHz, ___|Beamformer

due to hardware complexity and energy consumption issues
[3], [4], [5], [6], [7], [8]. To address this problem, the so-
called “hybrid architecture” was proposed. As illustrated
in Fig. 1, the hybrid architecture uses a much fewer number
of shared RF chains to support a large number of antennas.
This innovative design has attracted attention from both the
academic community [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18] and the industry [19], [20], [21], [22], [23], [24], [25].

Although attractive, hybrid architecture faces a critical
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Fig. 1: An HB architecture (BS side).

the severe Doppler effect. In 5G NR, new frame structures

challenge. Specifically, it must be able to offer a beamform-
ing solution in real-time to be practical. By real-time, we
mean that a beamforming solution must be found within
half of the channel coherence time.! At mmWave frequen-
cies, this channel coherence time is extremely short, due to
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1. For efficiency, we break up the channel coherence time into two
halves. Within each half, we transmit data based on beamforming
matrices that are computed in the previous half and compute the
beamforming matrices for the next half.

with shorter TTIs (compared to 4G LTE) are designed to
support communications over short channel coherence time
[26]. Specifically, under 5G NR numerology 0, a TTT is 1 ms,
while the TTIs for numerologies 1, 2 and 3 are 500 s, 250 us
and 125 ps, respectively. The shorter TTIs allow 5G to cope
with extremely short coherence time at high frequencies and
to support ultra-low latency applications. Therefore, for a
hybrid architecture to work under 5G NR, an HB solution
must be found within each TTI (corresponding to the ap-
plied numerology) to be useful. Further, a beamforming
design must consider a large number of resource blocks
(RBs), with each RB supporting multiple active users (MU-
MIMO).

Although there exist a number of research works in
the literature on HB design, few can meet the real-time
requirement with high throughput performance. For in-
stance, physical (PHY) layer research in this area attempted
to jointly optimize analog and digital beamforming [9],
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[10], [11], [12]. Unfortunately, the iterative nature of these
algorithms makes them difficult to be implemented in real-
time. In addition, a joint design requires explicit antenna-to-
antenna channel estimation and feedback, which involves
a prohibitively high complexity and a large amount of CSI
that is too difficult to obtain in practice [13].

To avoid the issues associated with a joint design, a new
and practical direction for HB is to follow a sequential de-
sign [14], [15], [16], [17], [18]. Here, an analog beamforming
is optimized first and then used as the input to optimize the
digital beamforming. For analog beamforming, there have
been successful designs and system demonstrations in the
literature, which are based on beam sweeping/discovering
techniques without explicit channel CSI [16], [17], [18].
After analog beamforming is applied to both the BS and
a user’s side, the effective channels seen at the baseband
can be obtained through conventional channel estimation
approaches.

However, how to properly design digital beamforming
in a sequential design remains a challenge. Most existing
works simply applied traditional beamforming methods
such as ZF, MMSE and Block Diagonalization (BD) [27]
as the digital beamformers [14], [15], [16], [17]. Although
simple, ZF and MMSE typically experience inferior through-
put performance for MU-MIMO and mmWave systems,
particularly under ill-conditioned channels [16], [28], [29].
Although BD beamforming and its variants are shown to
improve ZF/MMSE with a much better throughput perfor-
mance [27], [30], it requires many high-dimensional matrix
SVD operations, which are of high complexity and require
significant computation time.

As expected, finding a beamforming scheme that can
meet both the real-time requirement and high throughput
performance is not trivial. But recent advances in parallel ar-
chitectures (based on the many-core technology) have shed
new light on this problem. In particular, the general-purpose
GPU-based platform (e.g., those from Nvidia) is particu-
larly promising. Its dedicated single-instruction-multiple-
data (SIMD) architecture can solve a massive number of
structurally-identical problems at an extremely fast speed. It
also comes with highly programmable tools such as CUDA,
making the real-time implementation feasible and flexible
to many developers. A GPU-based parallel computing plat-
form now offers a new possibility to tackle many hard
problems whose real-time solutions are once considered
elusive [32].

In this paper, we present Turbo-HB,*> a GPU-based novel
design and implementation to achieve ultra-fast digital
beamforming. The key ideas of Turbo-HB are twofold. First,
we identify the bottleneck of computation time for BD-
type beamforming, which attributes to high-dimensional
SVD operations. Turbo-HB cuts down this computational
complexity by utilizing a randomized SVD technique. Sec-
ond, Turbo-HB accelerates the overall computation time
through large-scale parallel computation on a commercial
off-the-shelf (COTS) GPU platform. It incorporates a large
number of matrix transformations in parallel and special
engineering efforts such as minimized memory access. The
main contributions of this paper are summarized as follows:

2. By “Turbo,” we mean fast and efficient.

2

o This paper presents Turbo-HB, the first successful HB
design that can meet the sub-ms real-time require-
ment. This design considers a large number of RBs
with MU-MIMO capability, which can be applied
to 5G cellular systems. Our design only relies on
a COTS GPU platform and does not require any
customized hardware.

e Turbo-HB relieves the computational burden of SVD
significantly by leveraging the sparsity at mmWave
channels. Specifically, Turbo-HB is able to identify a
small number of the most significant directions on a
mmWave channel by exploiting the randomized SVD
technique. By limiting operations only to the key
information of interests, high-dimensional SVD op-
erations are transformed into lightweight lower-rank
matrix operations. By judiciously choosing a proper
target rank for lower-rank approximation, our design
can reduce the computation time dramatically.

o Turbo-HB is capable of parallelizing the MU-MIMO
beamforming for a large number of RBs and users.
First, the MU-MIMO beamforming is transformed
into a set of parallel single-user MIMO (SU-MIMO)
beamforming. Second, with customized nullspace
calculation based on Given'’s rotation method, Turbo-
HB accelerates computation and fully utilizes GPU’s
processing cores. Third, by employing batched ma-
trix operation with proper indexing method and
utilizing shared memory, Turbo-HB achieves large-
scale parallel matrix operations.

e We implement Turbo-HB on Nvidia DGX Station
using the CUDA programming platform. Extensive
experiments are performed to examine both the tim-
ing performance and throughput performance. Ex-
perimental results show that Turbo-HB is able to
obtain the beamforming matrices far less than 1 ms
for all tested cases. Specifically, Turbo-HB can meet
the 125us, 250 ps, and 500 ps timing requirement for
100 RBs with up to 4, 8, and 10 MU-MIMO users on
each RB, respectively. Turbo-HB can also offer higher
throughput performance for most cases compared to
the state-of-the-art (non-real-time) algorithms.

Notations: We use upper and lower-case bold letters to
denote the matrices and vectors, respectively. The upper-
case calligraphic letters denote the sets. The notation
CN (-, -) denotes the circularly symmetric Gaussian distribu-
tion. The notations (-)~! and (-)' denote the inverse and the
conjugate transpose of a matrix, respectively. The notations
| -] and || - || denote the determinant and the Frobenius
norm of a matrix, respectively. Table 1 lists the key notation
symbols and Table 2 lists the key acronyms used in this

paper.

2 RELATED WORK

Hybrid beamforming design is an active research area and
has attracted lots of research efforts. However, most existing
research has been largely limited to asymptotic complexity
analysis (i.e., in O(+)). Although such complexity analysis
is of interest from a theoretical perspective, it does not
give any indication on how much actual time (“real-time”)
is needed when it is implemented on a given hardware
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TABLE 1: Notations

Symbol  Definition
Ags Number of antennas at BS
Ay Number of antennas at user
B A set of RBs to be allocated in a time slot
Fgp Baseband precoder at BS
Fgp Baseband precoder at BS for user k
Frr Analog precoder at BS
K A set of users
K A subset of users using RB b
Msgs Number of RF chains at BS
My Number of RF chains at user
La Number of clusters on a link
Niay Number of rays on a link
Ny Number of data streams on a link
Wis. i Baseband combiner at user k
Wke. Analog combiner at user k
TABLE 2: Acronyms
Acronym Definition
BD Block Diagonalization
COTS Commercial Off-The-Shelf
CSI Channel State Information
ED Eigendecomposition
FPGA Field-Programmable Gate Array
G2H GPU to Host
GPU Graphics Processing Unit
H2G Host to GPU
HB Hybrid Beamforming
LDPC Low-Density Parity-Check
MMSE Minimum Mean Square Error
MU-MIMO  Multi-User Multiple-Input Multiple-Output
RB Resource Block
RF Radio Frequency
SIMD Single-Instruction-Multiple-Data
SINR Signal-to-Interference-plus-Noise Ratio
SM Streaming Multiprocessor
SNR Signal-to-Noise Ratio
SU-MIMO  Single-User Multiple-Input Multiple-Output
SVD Singular Value Decomposition
TTI Transmission Time Interval
ZF Zero Forcing

platform. On the other hand, for a real-world 5G system,
the ultimate benchmark is real-time performance, as there is
a stringent timing requirement under its numerology.

In the literature, all kinds of HB designs involve some
level of heuristics. One line of research is to jointly optimize
analog and digital beamforming to offer a near-optimal
solution (see, e.g., [9], [10], [11], [12]). A common feature of
these designs is that their algorithms must run iteratively to
update digital beamformers and analog beamformers. Due
to a large number of iterations that are needed in these
designs, none of them can offer real-time solutions under
the 5G requirement (sub-ms).

On the other hand, sequential designs are proposed to
reduce the complexity by decoupling the analog domain

3

and digital domain (see, e.g., [14], [15], [16], [17], [18]).
However, the mainstream of existing research works heavily
relies on reducing the asymptotic complexity (in O()) in
their algorithms. Since the asymptotic complexity analysis
of an algorithm is only concerned with when the input
size n is sufficiently large (approaches to infinity), it does
not reflect how much actual time it will need when input
data is finite, as in 5G. As a result, these sequential algo-
rithms do not meet the sub-ms timing requirement when
they are tested by a real timer. In addition, algorithms
designed with extremely simple digital beamforming such
as ZF/MMSE may also suffer from considerable throughput
loss at mmWave frequencies.

Recently, there has been a number of successful research
works applying parallel techniques to wireless networking
and signal processing problems. Some representative works
include [31], [58], [59], [60], [61], [62]. Specifically, the au-
thors in [31], [58], [59] implemented real-time designs to
address scheduling problems in 4G/5G networks. In [60],
the authors proposed MIMO detection algorithms that uti-
lize parallelism to achieve high-performance detection. The
studies in [61], [62] applied parallel processing to accelerate
LDPC decoding. These approaches were demonstrated on a
GPU or FPGA platform. Among them, the designs based
on general-purpose GPU platform (e.g., those from [31],
[58], [61]) provided a high level of parallelism and flexi-
bility, thanks to GPU’s large-scale SIMD architecture and
highly programmable tools such as CUDA. However, these
algorithms are designed to address scheduling or decoding
problems, and their approaches cannot be applied in solving
a complex beamforming problem under hybrid architecture,
which is the focus of this paper.

3 SyYSTEM MODEL

We consider a cellular communication scenario where a BS
serves a set K of users, as illustrated in Fig. 2. The BS is
equipped with Aps antennas and Mps RF chains. Under
HB architecture, Mps < Aps. Each user is equipped with
Ay antennas and My RF chains, and My < Ay. Since the
mathematical structure for uplink (UL) and downlink (DL)
is symmetric, it is sufficient to study one of them. We focus
on DL in this paper.

Considering a typical cellular system (e.g., 4G LTE and
5G NR), we study time-slotted scheduling over a wide
bandwidth. Within each time slot, there is a set B of RBs
over the DL bandwidth. For each RB b € 3, a subset of users
Kb C K is selected for MU-MIMO transmission. In practice,
the beamforming problem and user selection problem are
often decoupled to reduce complexity [33], [34], [35], [36],
[37]. In this paper, we focus on the beamforming problem
and assume the users on each RB are given a priori. For the
ease of notation, suppose the BS sends N, data streams to
each user.® At the user side, since the number of received
data streams cannot exceed the number of its RF chains, we
have N, < My. Likewise, at the BS we have |K?|N, < Mgs.

Under the HB architecture, beamforming is performed
in both digital and analog domains, as shown in Fig. 1.

3. With additional notation, our results can be extended to the case
where the BS sends a different number of data streams to different
users.
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Fig. 2: A cellular system consisting a large number of RBs
(with MU-MIMO capability).

At the BS side, the transmitted signal is first processed in
the digital domain by an Mps x |K®| N, baseband precoder
Fgp. Subsequently, an Apg X Mps analog precoder Fgr (also
known as RF precoder) based on analog circuitry (phase
shifters) is applied in the analog domain. Since complex
matrix Fgr is implemented with analog phase shifters, each
element in the matrix has the same amplitude and differs
in its phase, i.e, |(Frr)i, %BS, where (-); ; denotes
the (7, j)-th element of matrix (\ﬁl addition, to meet the
total power constraint at the BS, Fgg and Fgr must satisfy
||[FreFsp||% < Pr, where Pr is the total power at the BS and
|| - || 7 denotes the Frobenius norm.

For wireless channels, let H? € CAv*4s denote the
channel matrix for user k¥ € I on RB b € B, and nz is the
Ay x 1 vector of i.i.d CN(0, 0?) additive complex Gaussian
noise. We apply the widely used cluster-based mmWave
channel model [10], and do not consider the presence of
blockage in this paper. Let F§; and F4; denote the baseband
precoder and analog precoder for RB b, respectively. Then
the received signal of user kK on RB b is given by

(ke Kb, beB) 1)

b bbb ob b
Yy = HyFrpFpps” +ng,
where s? is the signal vector.

At the user side, a symmetric HB structure is employed
except with a fewer number of antennas Ay and a fewer
number of RF chains My. The received signal is first pro-
cessed by an Ay X My analog combiner Wrgg , (subject to
|(Wre k)i | = ﬁ) in analog domain. Then an My x Nj
baseband coAmbiner Wi, is applied.

Denote H? as the effective channel seen at the baseband,
ie, H = W?;kHngF Denote FgB,k as a sub-matrix of

b [Fb b b b :
Fpg = [Fgg1- Fpp FBB}“@I}, where Fyp . consists of
Ny columns and corresponds to the baseband signal s} for
user k. Then at user k and on RB b, we have the following
signal:
itk
~b _ Wbt fybmb ob bt frbmb b
Yr = W o Hy Fpp .51 + Z WBE,kaFBB,iSi
ieky

+ Wb Wik ot (k € K*,b € B)

where (-)T denotes the conjugate transpose of a matrix.
Therefore, the network throughput in b/s/Hz is

C= Z Z log (‘INS—F
beB kerh ?)
(Qz)_lwtgfa,kﬁngB,k Fll;;kﬁZTWgB,kD )

4

where QY is the covariance matrix of both interference and
noise, which is given by

i#k

b _ bt b b bt IybTywrb
Qi = Z W, o Hi Fpp i Fpp i Hy Wi 1
ieKch
2y bt bt b b
+ 0" Wep . Wi . Wre e Whes, i+

Then the throughput optimization problem under the HB
architecture can be stated as follows:

OPT-HB
C (Fip, Fig, Whp 1, W
max RF> £ BBs YV RF,k> YV BB,k
s.t. Power constraint: || Fa:Fhs|/% < Pr;

Constant modulus constraints:

1
Fb i, — ) “b m,n
|( RF) ,Jl /TBS |( RF,k) 5 |

Index range: b € B, k € K,
26{1723 7ABS}7je {1721 7MBS}7
me{l,2,---,Au}, n€{1,2,--- , My}.

In problem OPT-HB, the variables are digital and
analog beamformers Fip, Fpy, Wiy, and Wiy, while
Pr, Ags, Ay, Mgs, My are constants and B and Kb are given
sets.

Ideally, a joint optimization of all digital and analog
beamformers is required to find a global optimal solution.
However, several practical issues make such a joint design
infeasible. For example, the amount of CSI required is pro-
hibitively large; it is unclear how to estimate the antenna-
to-antenna channel H? through the lens of the RF precod-
ing and combining [13]. A new and practical direction to
address HB optimization is to follow a sequential design.
Under this approach, analog domain is optimized first and
then used as input to optimize the digital design [14], [15],
[16], [17], [18]. It has been shown that such a sequential
approach can offer a competitive performance (compared to
those heuristics attempting to solve joint optimization [10],
[12], [14], [39]).

Even with a sequential method, for MU-MIMO systems,
it would still require enormous computational efforts to find
a local optimum [40], due to the high complexity of high-
dimensional matrix operations (in addition to non-convex
programming). We discuss this problem in detail in the
following section.

1
VA’

4 REAL-TIME REQUIREMENT

In 5G NR, the frame structure is designed to be scalable
to accommodate diverse services and channel conditions.
Under 5G frame structures, a beamforming solution (for all
users on all RBs) must be obtained within 1 ms (numerol-
ogy 0), 500 ps (numerology 1), 250 us (numerology 2), or
125 ps (numerology 3). A shorter TTI can support applica-
tions with a shorter coherence time and a more stringent
latency requirement.

Note that under the HB architecture, analog beamform-
ing is meant to overcome path-loss fading by leveraging a
large number of antennas [14], [18]. This part is done on
a much larger time scale. In contrast, digital beamforming
can optimize capacity by managing interference among data
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streams, which heavily depends on fast fading. This part
has a much more stringent timing requirement. Therefore,
under a sequential design, the stringent sub-ms real-time
requirement mainly comes from digital beamforming.
Technical Challenge Digital beamforming for MU-MIMO
involves complex operations of matrices with a large num-
ber of elements. Traditional techniques such as ZF and
MMSE typically experience inferior throughput perfor-
mance for MU-MIMO and mmWave systems, particularly
under ill-conditioned channels [16], [28], [29]. On the other
hand, BD-type beamforming is shown to achieve much bet-
ter throughput performance compared to ZF/MMSE [27].
But BD involves high-dimensional matrix SVD operations,
whose computational complexity makes BD unsuitable for
practical use.

Objective The objective of this paper is to determine digital
beamformers (Fg& , and W& | ) in real-time. Specifically, we
want to develop a design that can meet the stringent sub-
ms timing requirement while offering comparable (or better)
throughput performance than state-of-the-art approaches.

5 A NoOVEL DESIGN FOR REAL-TIME BEAMFORM-
ING

5.1 Main Ildeas

Our main ideas consist of two parts.
Low-complexity SVD with high throughput First, we
show the high computation time for BD-type beamform-
ing is attributed to the high-dimensional SVD operations.
Then we propose to reduce this complexity by identifying
only a small number for the most significant dimensions,
leveraging the sparsity of mmWave channels. Specifically,
for a (|K°| — 1)My x Mps matrix (for BD beamforming),
a standard SVD algorithm takes O g[(|l€b| — 1)MU]2 MBS)
floating-point operations (flops) [47], [48]. Thus, applying
BD beamforming for |B| RBs and |K®| users at each RB
yields at least O (|B||1cb| (K] = 1)My)- MBS> flops.
To reduce this high complexity, we propose to utilize
the randomized SVD [47] to cut down the complexity to
O (|BlIK®| - 72 - L(|/Cb| —1)My + Mgg)), where r is much
smaller than (]XC°| — 1) My. In essence, the randomized SVD
is a lower-rank SVD approximation method. The reason
why it works extremely well here is because of the lim-
ited number of scatterers at mmWave frequencies and thus
highly correlated channels. In addition, by limiting the op-
erations to the key information of our interest and applying
the parallelizable Given’s rotation method, the lower-rank
SVD can be done extremely fast in our implementation.
Interestingly, although Turbo-HB employs a lower-rank
SVD approximation, it does not mean the throughput per-
formance needs to deteriorate. Rather, Turbo-HB appears
to offer higher throughput performance in most cases. The
science behind this behavior is attributed to the following.
First, since mmWave channels exhibit a high correlation
property, a small set of singular vectors in the lower-rank
SVD approximation is sufficient to capture the directions
of the most significant signals or interferences. Second, an
exact (|KC®| — 1)My x Mgs matrix SVD (as in standard BD)
aims to cancel all inter-user interference exactly (regardless
of how small it is). But canceling all inter-user interference

5

requires to project users’ signals onto mutually orthogonal
subspaces. To achieve such orthogonality, the perceived
strength of desired signals at a user is reduced in the
process. Since throughput is a function of SINR, it does not
help if the perceived strength of desired signals at a user
is reduced (for perfect orthogonality). On the other hand,
a lower-rank SVD approximation allows a certain level of
overlapping subspace of different users (as only a small
number of major signals preserve mutual orthogonality),
which in return preserves greater desired signal strength.
This offers us an opportunity to explore the promising
beamforming space that is missed by the BD technique.
Fully functioning parallelism We argue that the asymp-
totic complexity analysis (i.e., those expressed in the big-O
notation) does not directly translate into actual computation
time as measured by a wall clock for our problem. The
latter heavily depends on the underlying problem struc-
ture, actual input size, convergence speed, memory access
time, among others. This motivates us to our second idea,
which is to accelerate the overall computing process in real-
time, rather than focusing on O(-) analysis. We propose to
design a beamforming algorithm with parallelizable imple-
mentation, incorporating special engineering efforts such as
minimizing memory access.

Specifically, the MU-MIMO beamforming is first trans-
formed into a set of parallel SU-MIMO beamforming. Then
a large number of matrix operations are executed through
batch computing. To achieve batched matrix operations (for
a large number of RBs and users), Turbo-HB generates a
large number of threads that fully occupy a GPU’s process-
ing cores and thus reaps the full benefits of GPU’s parallel
processing capability. At each step throughout our imple-
mentation, we meticulously minimize memory accesses to
reduce time. For example, batched matrix operations such as
QR factorization and matrix multiplications are optimized
with the use of fast on-chip shared memory. We carefully
organize the storage of a large number of matrices with
proper indexing. By managing consecutive GPU threads to
read consecutive (and aligned) memory, multiple memory
accesses can be combined into a single transaction. Further,
Turbo-HB limits operations to the key information of our
interests (e.g., certain singular vectors) and thus eliminates
unnecessary calculations, parameter passing and memory
access.

5.2 Design Details

The task of computing beamforming matrices can be split
naturally into three computational stages. The first is to
transform the MU-MIMO channel into a set of parallel SU-
MIMO channels. The second is to apply the randomized
SVD with low computation complexity to obtain certain
singular vectors for beamforming. The third is to construct
the final digital beamforming matrices based on obtained
singular vectors. Specifically, the objective of each stage is
described as follows.

« Stage A: Given the partial CSI V? and X! (from
IfIZ = UzEzVZT) that are computed and fed back
by each user, we construct matrices ﬁz and ﬁz such
that ﬁz and ﬁg contain all the information that
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is needed to compute beamforming matrices Fg& &
corresponding to user k. After this stage, the MU-
MIMO channel is transformed into a set of parallel
SU-MIMO channels.

« Stage B: Given matrix H?, we apply the randomized
SVD technique for lower-rank matrix approxima-
tions (with lower computational complexity). Then
we obtain \72(_), which contains the necessary sin-
gular vectors to cancel inter-user interference.

. ==b ~b(—
o Stage C: With matrices H;, and VZ( ), we construct
the final digital beamforming matrices FgB’k.

In the rest of this section, we offer details of each stage.
Stage A. Each user k estimates the effective channel ﬁz
and computes its SVD as H) = UZZ%VZT. User k uses the
first N, columns of U}, as its digital combiner, i.e., Wy  is
set to the first N, columns of U?. Then to help form digital
precoder at the BS side, only partial CSI, i.e., V{ and X?, are
required to feedback to the BS (note that X% is diagonal and
V! is unitary and thus can be efficiently compressed [49]).
Let .

H, =32V}

Then for our beamforming purpose, ﬁz (an My x Mpg ma-
trix) captures sufficient information of the intended channel
from the BS to user k. .

Denote H}, as the concatenation of H}’s of all users in
K except intended user k, ie., if K® = {k}U{1, -,k —
Lk+1,---,|K"}, then

SO < O < 1 7ot 1
o — [H1 Hy Hk+1...H‘}Cb|:|

isa (|KC%| — 1) My x Mps matrix that captures information of
interference channels corresponding to user k.

As ﬁz and PNIZ are sufficient to construct the beamform-
ing matrices Fg& . corresponding to user k, the MU-MIMO
channel is transformed into a set of |K’| parallel SU-MIMO
channels on each RB. Consequently, the remaining Stage B
and Stage C can be processed in 3,5 |K"| parallel flows,
each of which contributes to one beamforming matrix for
one user per RB.

Stage B. To construct beamforming matrix Fg&  Cor-
responding to user k’s signal, we need to make sure that by
applying FgB)  most (if not all) of the interference to user k
can be canceled. This can be realized with the help of SVD
of interference channel HY. Let

s 0

b _ 171b
H _Uk{ P

] [VH U 3)

where \72(7) is the last (Mps — r) columns of the right
singular matrix corresponding to the smallest (Mps — r)

singular values of Ith,, {/ZH) is the remaining r columns
of the right singular matrix, and r is a constant.

Then, if the eigenvalues corresponding to \N/'Z(_) are close
to zero, we have

H V) ~0, (beB kekh).

It follows that
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Fig. 3: Singular values of ﬁz (averaged over 100 instances)
under different number of scatterers based on mmWave
channel modelling.

EVad <. . .
for any Vk(+) (which is used to differentiate data streams
within a user and will be determined later). Therefore, by
constructing Fg& L as

~ b (—)==b(+
FgB,k = VZ( )Vk-( )» 4)

most of the inter-user interference can be suppressed.

Now we have a real-time challenge. Stage B is
computation-intensive as a high-dimensional SVD (i.e.,
Eq. (3)) is required. H? is a (K| — 1)My x Mss
matrix ~ with  standard = SVD  complexity = of
o) (|B||icb| (Kt = 1)My)? MBS) for |B| RBs. Its
computation time can take more than 70% of the total
time when not optimized (from our experiment).

In fact, the computation time of matrix SVD (power
method) is tightly related to the decaying speed of singular
values [50]. For instance, suppose we have a matrix with 4
decreasing singular values o1, 02,03 and g4. If 01 > 03 >
o3 = 04 ~ 0, then it is computationally fast to obtain the
first two singular values (and associated singular vectors),
whereas it would take much longer to obtain the last two
singular values. This observation is especially important,
since at mmWave frequencies, most signal strength will be
concentrated in a few directions due to the limited number
of scatterers. As a consequence, it is likely that we encounter
several non-zero but close-to-zero singular values. Finding
those small singular values would take a long time and it
does not help much in terms of throughput performance (as
we shall see in Section 5.3). N

To verify the singular values of H?, we conduct tbe
following experiment. We generate 100 instances of HY
based on mmWave channel model to have H?’s (using the
widely adopted mmWave channel model as described in
[10]). For analog beamforming, we adopt the well-known
DFT-codebook-based method [14], [51]. We set Aps = 128,
Ay = 8, Mps = 20, My = 4 and |K’| = 5, thus Hz is
a 16 x 20 matrix. We investigate two different scattering
scenarios: (a) The number of clusters L4 and the number of
rays within each cluster L.,y are both set to 3; (b) Lq and
L.,y are both 6 (as typical number of paths for practical
mmWave channels [4], [16], [18], [52]). Averaged by 100
instances, the singular values of HzHZT are plotted in Fig. 3.
As we expected, the singular values are decaying fast in the
beginning but then flatten out. The decaying speed is faster
when the number of paths is smaller. More importantly, the
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last several singular values are pretty small but very close.
This means the corresponding directions in the eigenspace
have very weak signals but consume much computational
effort to differentiate them, which is wasteful.

Following the above analysis, our next objective is to
implement a lower-rank SVD approximation with lower
computational complexity. To this end, we apply the ran-
domized SVD technique [47]. The key idea of randomized
SVD is that with the help of a random Gaussian matrix €2
we form a rank-r basis P, with r < (|K?| — 1)My < Mgs,
that captures the dominant directions with the largest SVD
singular values. Then the original matrix is projected onto a
lower-dimensional subspace (based on basis P) to compute
a standard rank-r SVD. We summarize this procedure in Al-
gorithm 1 and call it Raw Randomized SVD. H?, will be used
as input for Algorithm 1. As we see in Step 5 of Algorithm 1,
due to the lower-rank r, only a small-scale SVD is required.
The complexity of Step 5 is O (r? - [(|[K*| — 1) My + Mgs)),
which has been reduced from O ([(|1Cb| - 1)MU]2 . MBS).
How to choose a proper value of r will be discussed in the
next section.

We now customize the Raw Randomized SVD to further
expedite computation time. Note that from Eq. (3) and
Eq. (4) in Stage B, our interest is \72(7), the last (Mpgs — 1)
columns of the right singular matrix corresponding to the
smallest (Mgps — 1) singular values of H?, while the singular
values and left singular matrix are not necessary for the
beamforming design. However, by examining Algorithm 1,
a thorough lower-rank SVD is performed, including the
calculation of unnecessary singular vectors and singular
values (see Steps 3 to 6). Therefore, we can customize Steps
3 to 6 to reduce time. First, note that \N/'Z(f) is also the
nullspace of YTA. The calculation of the orthogonalization
and normalization of the range of Y in Step 3 is not required
in our case. Second, it is redundant to perform a complete
SVD as in Step 5 to obtain the nullspace. Therefore, we apply
the QR factorization and choose the Given's rotation method
[54] to directly obtain the nullspace of YTA. Moreover,
we implement the Given'’s rotation-based QR by exploiting
parallelism. This is done by leveraging the following two
characteristics of Given'’s rotation: i) at each iteration, all
the rotated elements (elements of two columns of Y) can
be updated simultaneously; ii) at each iteration, only two
columns of Y are dependent. It is worth noting that the
mathematical complexity (in O(-)) for a complete SVD and
Given’s rotation-based QR may be the same, but in practice
the QR method can lead to dramatic acceleration for our
problem in real-time. This is because the QR method (with
parallel implementation) can save a lot of redundant calcu-
lations and memory write/read caused by operations such
as column interchanges and computing variables that are
not of our interest. The revised algorithm is summarized in

Algorithm 2.
Algorithm 2 for Stage B significantly reduces the com-
putation time of standard SVD operations — the main

bottleneck in BD beamforming. The only additional cost is a
few more matrix multiplications, which, fortunately, can be
parallelized and computed efficiently (more details in Sec-
tion 6). Although the randomized SVD is an approximation
method, we will not analyze its performance here, since

Algorithm 1: Raw Randomized SVD

Given an m x n matrix A, a target approximation rank
r, and an exponent q (say ¢ = 1 or ¢ = 2), this
procedure computes an approximate rank-r factorization
A~ UXVH:

1 Generate an n X r Gaussian matrix 2.

2 Form the m x r matrix Y = (AAT)7AQ by
multiplying alternately with A and A

3 Construct an m x r matrix P whose columns form
an orthonormal basis for the range of Y.

4 Form the 7 x n matrix B = PTA.

5 Compute an SVD of the small matrix: B = UXVT.

6 Set U = PU.

Algorithm 2: Lightweight Nullspace Computation

Given an m x n matrix A, a target approximation rank
r, and an exponent q (say g = 1 or ¢ = 2), this
procedure computes an approximate last n — r right
singular vectors of A, denoted as V:

1 Generate an n x r Gaussian matrix €2.

2 Form the m x r matrix Y = (AAT)7AQ by
multiplying alternately with A and AT.

3 Form a7 x n matrix B = YTA.

4 Compute QR decomposition of BT based on Given'’s
rotation: Bf = QR.

5 Set V as the last n — r columns of Q.

it is only an intermediate step for beamforming. Instead,
we will discuss and show both the timing and throughput
performance by applying randomized SVD in Section 6.
Stage C. In this stage, we construct the digital beamform-
ing matrices FgB,k' For given matrices ﬁz and Vz(f), the
product of ﬁz and \72(_) effectively forms user k’s channel
with no (or minor) inter-user interference (recall Eq. (5.2)).
Therefore, the optimal beamforming strategy regarding the
effective My x (Mps — r) channel ﬁZVZ(f) can be realized
based on its SVD, which is given by:

—boob(—)  ==bwb [=b(+) ==b(—)]T
HkVZ( ):Ukzk [Vk( : Vk( )} , )

where VZH)

and VZ(’) is the remaining columns. Finally, the digital
beamforming matrix FgB’ % is given by

is the first Ny columns of right singular matrix

~ b(—)~b(+
FgB,k = VZ( )Vk ), (6)

In Eq. (5), we encounter another SVD computation.
Luckily, the dimension of this to-be-factorized matrix is tied
to the number of RF chains at one user, namely My, which is
typically small (e.g., 1 to 4). VZ(Jr) can be derived with the
help of a Hermitian matrix eigendecomposition (ED) and
matrix multiplication, through the following steps:

e Form an My x (Mps — r) matrix A} = ﬁivz(‘);
e Form an My x My matrix B? = AZAZT;
« Compute ED of the Hermitian matrix: BY =
b
UiAZUJ;
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Fig. 4: Signal is projected onto a lower dimensional subspace
to avoid interference. (a) Signal s is projected along the x
axis, resulting in s’; (b) (a) Signal s is projected onto the
zOy plane, resulting in s”.

—b(+)

e SetV,  to the first Ny columns of AZTUZ.

Note that when My = 1 or 2, a simple and exact closed-
form solution for SVD exists [53] and hence this stage can
be completed very fast.

5.3 Approximation with Lower Rank

As we discussed in Section 5.2, Turbo-HB applies lower-
rank approximation to reduce computational complexity.
Interestingly, in most cases, our approximation does not
sacrifice throughput performance. In this section, we offer
some intuition behind it. Then we address the last problem,
which is how to choose a proper value for 7. N

Let’s revisit the SVD of interference channel H? as in
Eq. (3). In the Mps-dimensional signal space [\72(“ \N/'Z(_)],
\N/'Z(f) is an (Mpg — r)-dimensional subspace corresponding
to the (Mps —r) smallest interference strengths, while {TZ(JF)
is a r-dimensional subspace corresponding to the r largest
interference strengths. When standard SVD is performed,
we have 7 = (|K|—1) My (as in conventional BD approach).
Then \72(_) lies exactly in the nullspace of H?, and therefore
all inter-user interference will be cancelled when Fg&k is

constructed based on \N/'Z(f) (i.e., Eq. (6)). In addition to
high complexity, there is another drawback of such a “per-
fect” interference cancellation. That is, to achieve mutual
orthogonality, one has to project the desired signal onto a
subspace with a small number of dimensions. As a result,
the perceived desired signal strength at a user is reduced.
In Fig. 4, we use a simple example to illustrate this
point. In a 3-dimensional signal space, we have a strong
interference f; along the z axis and a weak interference f,
along the y axis. Now we are going to project a desired
signal s (originally in the xyz space) onto some subspace to
avoid interference (via beamforming). If perfect interference
cancellation is required, then s has to be projected along the
x axis to achieve orthogonality to both f; and f5, leading to
a smaller-strength signal s, as shown in Fig. 4(a). However,
if only the strong interference f; is required to be cancelled,
then one can project s into a larger dimensional subspace,
i.e, Oy plane, resulting in s” as shown in Fig. 4(b). Al-
though s” is interfered with by a weak interference f, s”
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Fig. 5: Achieved network throughput (averaged over 1,000
instances) as a function of approximation rank r under
different SNR and number of channel paths.

can preserve higher signal strength than s’, which will lead
to a higher SINR (and throughput).

Turbo-HB is purposefully designed to explore such a
design space by tolerating some level of weak interfer-
ence. When lower-rank SVD approximation is performed,
it is meant to only identify » directions corresponding to
r strongest interference. Without knowledge of how re-
maining interference presents, the desired signal will be
projected onto a larger dimensional subspace only to avoid
the identified interference, preserving greater desired signal
strength. This approach is especially effective for scenarios
where there is a high correlation among the channels or
SNR is low. Since in these scenarios, the last few singular
values (i.e., corresponding weak interference strengths) are
small compared to the power of white noise. Then the
dominant term in the denominator of SINR becomes the
power of noise, which cannot be suppressed by interference
cancellation. Thus, by tolerating weak interference, desired
signal strength is preserved to overcome a bigger issue (the
noise), leading to a higher SINR.

Now we address the question of how to choose a proper
value for 7. Since 0 < r < rank(H?) = Mps — My and
is an integer, we have (Mps — My) possible values for r. If
we choose 7 to be too large (i.e., close to (Mps — My)), then
we will have to get into high-dimensional SVD operations,
which are what we try to avoid. On the other hand, if we
choose 7 to be too small, then we may experience serious
sacrifice in throughput performance. So the goal is to find
an optimal 7 that offers the best trade-off. Unfortunately,
finding the optimal value of r (in terms of maximizing
network throughput) is intractable, due to the large search
space and non-convex objective function.
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To gain some insight into what value of r should be, we
conduct the following experiment. We randomly generate
1,000 channel instances under different settings following
the mmWave channel model. For each instance, we enumer-
ate all possible r’s and calculate its corresponding through-
put C. For the time being, we focus only on the objective
function (throughput) and defer consideration of computa-
tion time till later. In the experiment, we set Vg = 2 and use
the same settings as those used in Section 5.2 except that
we now vary SNR values and the number of channel paths.
Specifically, let’s consider a low SNR scenario (5 dB) and a
high SNR scenario (20 dB), each of which is in combination
with a small number of clusters and rays (Lq = Lray = 3)
or a large number of clusters and rays (Lq = Ly = 10).
Fig. 5 shows the achieved network throughput as a function
of approximation rank r under these four scenarios. Note
that when r = 16, the achieved throughput value (the first
blue bar in each figure) is what is achieved by standard SVD
(as in traditional BD method). For the first three scenarios,
where the channels are experiencing at least low SNR or
high correlations, we observe that the throughput goes up
at first and then goes down as the value of r decreases.
Only when the channels maintain both high SNR and low
correlations (as in scenario (d)), the network throughput
would strictly decline as the value of r decreases. However,
scenario (d) is relatively rare for mmWave systems. This
experiment suggests that the lower-rank r indeed offers the
opportunity for higher throughput, especially at low SNR or
high correlation scenarios. Under this scenarios (a), (b) and
(), setting r = % = 10 would offer better (or comparable)
performance than that with » = 16 in most instances.

The results in Fig. 5 are averaged over 1,000 channel
instances. However, our interest is on a particular channel
instance, and the optimal choice of r based on averaging
over 1,000 channel instances may not perform well in this
particular instance. Therefore, we propose to employ multi-
ple choices of promising 7’s in parallel and derive multiple
beamforming candidates corresponding to these r’s. That
is, we execute several different lower-rank approximations
simultaneously, where the set of target rank is given by

R:{T—é,"',T—l,T7T+17"',’f’+(5}, (7)

where r is around % (which may be adjusted according

to empirical statistics), and ¢ is a parameter to control
the number of elements in R. As |R| different lower-rank
approximations are implemented, we will have |R| different
solutions of Fg& . for each user on each RB after Stage C.
Among these |R| solutions, we evaluate their throughput
performance (i.e., C in Eq. (2)) and choose the one that offers
the largest objective value as the final beamforming matrix.

6 IMPLEMENTATION

In this section, we present the implementation of our design
in Section 5. Our implementation is done on Nvidia DGX
station — a COTS GPU platform. Our Nvidia DGX Station
consists of 4 V100 GPU cards but we use only two of
them. Each V100 card includes 80 streaming multiprocessors
(SMs), and each SM has 64 CUDA cores. The CPU of our
DGX station is Intel Xeon E5-2698 v4 2.2 GHz (20-core).
The data communication between CPU and GPU is based

9

on a PCle V3.0 architecture [55]. CUDA programming tool
(version 10.2) [57] is used to realize our algorithm and
schedule the memory and processing cores.

For a successful implementation of Turbo-HB, we must
have a thorough knowledge of the capability and limitations
of the GPU and find a way to fit our problem into the
platform. In general, the more parallelism and less overhead
in the implementation, the better the performance we can
achieve. As such, we focus on the following two objectives
in our implementation:

1) fully utilize GPU processing cores,
2) minimize memory access time.

In the rest of this section, we present the details of our
implementation based on the above two objectives.

6.1 Workflow on GPU

The key to fully utilize GPU processing cores is to have
a sufficient large amount of parallel workloads in flight
to feed all the GPU cores. By our design in Section 5,
the computations for beamforming matrice are independent
among different RBs, different users, and different target
ranks. Thus, we can spread out the computation tasks
over all available processing cores. At each step in the
implementation, the computation tasks are broken into a
number of parallel processing flows. Each flow is a group
of parallel threads that executes certain operations. All the
flows shall be mutually data-independent and have the
same computation procedures to take advantage of GPU’s
SIMD architecture. Based on the architecture of our GPU
V100, every consecutive 32 parallel threads are assembled
into a group called a warp for executing exactly the same
instructions (while handling different data). Therefore, it is
preferable that a flow consists of an integral multiple of (or
close to an integral multiple of) 32 threads. As V100 has 80
SMs, the number of flows should be at least 80 to avoid idle
SMs.

As illustrated in Fig. 6, our implementation includes the
following key steps.

Step 0: Initialization. The system first sets up global
parameters, including the number of RBs |B], user sets K°
on RB b, and the number of RF chains at BS Mgs and at users
My, etc. Then we calculate and allocate the memory space
needed on GPU for storing the matrices and variables.

Step 1: Set up global parameters and transfer the
compressed CSI from host to GPU. At the beginning of
each time slot, the host transfers ), . |K?| partial CSI (i.e.,
V¥’s and X%’s) from host memory to GPU global memory
(also known as device global memory). Since we use two
V100 GPU cards, we divide the channel matrices into two
halves. The first half corresponds to the first @ RBs and is
transferred to the first GPU card. The second half will be
handled by the second GPU card.

Step 2: Execute Stage A. The objective of this step is to
generate HY, for every k € K” and b € B on GPU. We gener-
ate a total number of Y, |K?| parallel flows, where each
flow corresponds to the beamforming matrix of one user on
an RB. We program one thread to calculate one element of
Hz, thus a total number of ), |K?| - Ninread threads are
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Fig. 6: Workflow of implementing Turbo-HB on GPUs.

spawned in this step, where Ninread = (|K°| — 1) My x Mgs
is the total number of elements in HY.

Step 3: Execute Stage B. As we discussed in Sec-
tion 5.2, the main task of this stage is to compute the
approximate nullsapce of HY. We generate a total number of
> e |KP||R| parallel flows, where each flow corresponds
to the computation for one user on one RB with one target
rank. Each flow executes Algorithm 2 to derive matrix
\72(_). In particular, for the QR decomposition in Step 4 of
Algorithm 2, we use Given’s rotation method. The compu-
tation requires multiple iterations and each iteration would
overwrite the processing matrix. To reduce the memory
access time for repeated accesses, we first transfer the input
matrix from GPU’s global memory to the fast on-chip shared
memory, then the iterative computations are performed
based on shared memory access. The output matrix is trans-
ferred back to global memory after QR decomposition is
completed. Step 3 is the most computation-intensive step
in our implementation. It consumes around 130 us (for
Mgs = 16, My = 2 and |K®| = 8) after our optimization.

Step 4: Execute Stage C. In this step, 3,5 |K’||R|
parallel flows are generated to calculate FgB’ ;- This step
includes a small dimensional SVD operation. Note that
when My = 1 or 2, simple closed-form expressions can be
directly applied for SVD computation.

Step 5: Choose the best solution. After Step 4, we ob-
tain |R| beamforming candidates for each user on each RB.
In 3,5 |K||R| parallel flows, we evaluate their through-
put performance as in Eq. (2) for every beamforming can-
didate. The best Fj; , that provides the highest objective
value C' in Eq. (2) will be chosen as the final solution. To
speed up comparison, parallel reduction technique [56] is
employed.

Step 6: Transfer beamforming solution from GPU to
host. Once Step 5 is accomplished, the final beamforming
solution (i.e., Fg&k for every k € K’ and b € B) is

transferred from GPU memory to the host memory.

6.2 Speed-Up Techniques

Now we discuss two specific techniques that we have
employed in Turbo-HB to enhance parallelism and reduce
memory access time.

Batching Batched matrix operations are critical to our
problem, as we have to execute a large number of inde-
pendent matrix operations following the same procedure.
As an example, suppose we need to execute hundreds or
even thousands of matrix multiplications simultaneously.
The programmer needs to generate a kernel with a sufficient
number of threads and divide these threads into a number of
groups. Then each group computes one or a few matrix mul-
tiplications, such that this kernel is able to perform batched
matrix multiplications. Similarly, other matrix operations
(following the same procedure), such as a large number of
independent matrix ED operations, should be programmed
in a batched manner to fully occupy the processing cores.
Minimizing global memory access Compared to other
types of memory access, accessing global memory is much
more time-consuming. We identify two techniques that can
help minimize global memory access in our problem.

First, the programmer should carefully coalesce memory
access, i.e., consolidate multiple memory accesses into a
single transaction. This is particularly important when we
handle a large number of matrix operations. The key to
memory coalescing is to store the matrices consecutively in
the memory with proper indexing. Then the programmer
can allow consecutive threads to read consecutive (and
aligned) memory and minimize the number of transactions.

Second, instead of global memory accesses, which is
more time-consuming, we can use on-chip shared memory
accesses, which is much faster (but with limited storage
space). Suppose we want to compute a matrix multiplication
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Fig. 7: Comparison of execution time of different schemes under different MU-MIMO scenarios.

Crxn = ApxiBixn. A straightforward approach for paral-
lelism is to program each thread to take care of one element
of C. Then we need to read A n times from the global
memory and B m times. In contrast, if matrix multiplication
is based on shared memory [57], we only need to read A for
(n / block size) times from the global memory and B for (m
/ block size) times. The remaining computations are done
by accessing the shared memory.

7 EXPERIMENTAL VALIDATION

In this section, we present our experimental results, with
a focus on timing and throughput performance. We also
compare with other state-of-art sequential HB schemes. For
the analog beamforming part, we apply the widely adopted
DFT-codebook-based method [14], [51] for all schemes. For
digital beamforming schemes, we choose HB-BD [14], HB-
MMSE and HB-ZF for comparison. We also include one joint

analog and digital HB method (JHB) [11] to show its timing
performance.

Experiment Setup We consider a cellular communication
scenario with one BS and a number of users. The number
of available RBs is up to 100. The BS is equipped with
128 antennas and each user is equipped with 16 antennas
(a typical number for hybrid architecture at mmWave fre-
quencies [4], [10], [14]). The number of RF chains at the BS
varies from 8 to 20, while the number of RF chains at a
user is 2. Each active link is assumed to transmit Ny = 2
data streams. The number of active users for MU-MIMO
transmission on each RB (i.e., |K’|) varies in this study. For
the wireless channels, we use the widely considered cluster-
based mmWave channel model [10]. The number of clusters
L, the number of propagation paths L.,y caused by each
cluster and SNR (i.e., %) will be given under different
settings. The angle spread oag is set to 5 degrees. In this
paper, we do not consider the presence of blockage. We set
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Fig. 8: Average execution time of Turbo-HB vs. the number
of available RBs |B| under different Mpg settings.

parameter ¢ (as defined in Section 5.3) to 2.

Timing Performance We first verify that Turbo-HB can
indeed offer the beamforming solution in less than 1 ms for
all settings in our experiments and even achieves as little
as 125 ps execution time in some settings. Note that the
time consumed for data transfer between CPU and GPU is
included in Turbo-HB’s total execution time.

We first run the experiments for 100 consecutive TTIs
under different settings as follows: (a) Mps = 8, |K°| = 4,
(b) Mys = 12, |[K°| = 6, (c) Mps = 16, |[K’| = 8 and
(d) Mps = 20, |Kb| = 10. For the sequential algorithms
(Turbo-HB, HB-BD, HB-MMSE and HB-ZF), we only count
the computation time of the digital beamforming part. But
for the joint algorithm (JHB), we have to count the time
consumed both for its digital beamforming and analog
beamforming since they are inseparable. Our GPU-based
algorithm is run on the CUDA platform while others are run
on the Matlab platform. Fig. 7 shows the results of execution
time by different schemes. JHB, HB-BD, HB-MMSE and HB-
ZF require a computation time on the order of 103 ms, 102
ms, 10! ms and 10! ms, respectively. Our experiments show
that Turbo-HB finds beamforming solution in 114 ps, 162 us,
250 ps, and 335 ps averaged by 100 TTIs under settings (a),
(b), (c) and (d), respectively. Based on the numerologies de-
fined in 5G NR, Turbo-HB can meet the timing requirement
for numerology 3 (125 us TTI), numerology 2 (250 us TTI)
and numerology 1 (500 us TTI) for 100 RBs with up to 4, 8,
and 10 MU-MIMO users on each RB, respectively.

Next, we conduct experiments to examine Turbo-HB'’s
total execution time under different numbers of available
RBs |B|. We consider the following settings: (a) Mps =
12,|K% = 6, (b) Mps = 16,|K°| = 8. and (c) Mps =
20, |K®| = 10. Fig. 8 shows Turbo-HB’s execution time
performance (with value for each point being average over
100 TTIs) for the three settings. Note that the execution
time increases slowly (and close to linear) as the number of
RBs increases. This is because under Turbo-HB, computation
among different RBs is executed in parallel and is not
very sensitive to the number of RBs. For a given Mgg, the
network operator can set the upper bound for the number
of RBs to meet a certain 5G numerology. For example, when
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Fig. 9: Average execution time of Turbo-HB vs. the number
of RF chains Mgg at the BS under different settings of
available RBs |B].

Mpzs = 16, if the number of RBs is no more than 95 (a large
number), we can meet 5G numerology 2 requirement (250
1s).

In Fig. 9, we vary the number of RF chains at the BS (i.e.,

Mps) to show its impact on Turbo-HB’s execution time. For
this study, we consider the settings of |B| € {60, 80,100}
and |Kb| = %, while Mgg varies from 8 to 20. As expected,
the results in Fig. 9 show that Turbo-HB’s average execution
time is increasing with Mgs. Compared with varying |B],
Turbo-HB is more sensitive to the change of Mjgs. This is
because the larger the Mjps, the higher dimensional matrix
operations will be required, which leads to more compu-
tation time. However, Turbo-HB is able to complete the
computation in real-time, thanks to its design based on
randomized SVD.
Throughput Performance We first evaluate throughput
performance achieved by different schemes under vary-
ing SNR values. We consider two different settings: (a)
Mgs = 10, |K?| = 4, and (b) Mps = 20, |[K?| = 8. We set
Na = Npay = 3 and SNR varies from —5 dB to 25 dB in both
cases. Fig. 10 shows that in both cases, throughput under
conventional HB-MMSE and HB-ZF methods are below the
others, as MMSE and ZF are not designed for mmWave sys-
tems and the poorly conditioned channel greatly degrades
MMSE/ZF’s performance [16], [28], [29]. In Fig. 10, Turbo-
HB is able to achieve similar performance as the classical
HB-BD and is better than the others.

Next, we vary the channel correlation condition (by
varying the number of propagation clusters L) and study
its impact on throughput performance. We fix SNR = 20 dB,
Msgs = 20, |K®| = 8, and Nray = 3. We vary L from 1 to 7.
Fig. 11 shows the throughput achieved by different schemes
as a function of N. The results show that the performance
by HB-MMSE and HB-ZF is significantly lower than the
others, especially when the number of clusters is small (and
thus the channels are highly correlated). On the other hand,
Turbo-HB is able to achieve similar performance as HB-
BD and offers high throughput than HB-MMSE and HB-ZF.
This is because both Turbo-HB and HB-BD are SVD-based
and are capable of identifying the best signal directions for
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beamforming. When the number of channel paths is small,
Turbo-HB is able to obtain even better performance than
HB-BD. The reason behind this was given in our discussions
in Section 5.3.

Finally, we present throughput performance under dif-
ferent numbers of RF chains Mgg at the BS. We consider the
setting of SNR = 20 dB and Ny = Npy = 3. Mps is cho-
sen from {8,10,12,14,16,18,20}, and |K’| is chosen from
{2,3,4,5,6,7,8} accordingly. In Fig. 12, the results show
that the network throughput is increasing with Mgg for all
schemes as more users can be supported. The performance
gap between Turbo-HB/HB-BD and HB-MMSE/HB-ZF is
also increasing with Mpgg as the SVD-based approaches can
better reap the benefits provided by additional RF chains.
Again, we find that Turbo-HB can offer similar performance
as HB-BD and outperforms other schemes.

Summary of Results The experimental results show that
Turbo-HB can meet the 1-ms real-time requirement under
all tested settings and can meet the 5G requirement with ap-
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propriate numerology. On the other hand, all other schemes
incur a computation time that is of orders of magnitude
higher than Turbo-HB and none of them can meet the 5G
timing requirement. Further, Turbo-HB is able to offer a
throughput performance that is better or comparable to the
state-of-the-art algorithms.

8 CONCLUSIONS

This paper presents Turbo-HB, the first design and im-
plementation that addresses the real-time challenge for
beamforming under HB architecture. To reduce computa-
tion time, Turbo-HB exploits the randomized SVD technique
by leveraging channel sparsity at mmWave frequencies.
Further, Turbo-HB exploits large-scale parallel processing,
with optimized matrix operations and minimized memory
accesses. We implemented Turbo-HB on COTS Nvidia DGX
Station with the CUDA programming platform. Through
extensive experimental studies, we found that Turbo-HB
is able to find beamforming matrices successfully under
1 ms for all tested cases. Specifically, Turbo-HB can meet
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the 125us (numerology 3), 250 us (numerology 2) and 500
ps (numerology 1) timing requirements for 100 RBs with up
to 4, 8, and 10 MU-MIMO users on each RB, respectively.
In the meanwhile, Turbo-HB offers competitive throughput
performance compared to the state-of-the-art algorithms.
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