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Abstract—Degree-of-freedom (DoF)-based models have been proven to be highly successful in modeling and analysis of MIMO
systems. Among existing DoF-based models, the number of DoFs used for interference cancellation (IC) is solely based on the number
of interfering data streams. However, from both experimental and simulation results, we find that signal strengths of an interference link
vary significantly in different directions in the eigenspace. In this paper, we exploit the difference in interference signal strengths in the
eigenspace and perform IC with DoFs only on those directions with strong signals. To differentiate interference signal strengths on an
interference link, we introduce a novel concept called “effective rank threshold.” Based on this threshold, DoFs are consumed only to
cancel strong interferences in the eigenspace while weak interferences are treated as noise in throughput calculation. To better
understand the benefits of this approach, we study a fundamental trade-off between network throughput and effective rank threshold
for an MU-MIMO network. Our simulation results show that network throughput under optimal rank threshold is significantly higher than
that under existing DoF IC models. To ensure the new DoF IC model is feasible at PHY layer, we propose an algorithm to set the

weights for all nodes that can offer our desired DoF allocation.

Index Terms—Degree of freedom (DoF), MIMO networks, interference cancellation.

1 INTRODUCTION

EGREE-of-Freedom (DoF) based models have become

widely popular in the research community for mod-
eling, analysis, and optimization of MIMO networks [2-
13]. Due to their simple abstraction of MIMO’s capabilities
in spatial multiplexing (SM) and interference cancellation
(IC) [14-18], a DoF-based model can be used for resource
allocation for SM and IC with simple “+/-” arithmetic
calculations. By avoiding complex matrix manipulation in
resource allocation, DoF-based models are powerful and
tractable tools to analyze MIMQO’s behavior in a network
setting.

Under a DoF-based model, the total number of available
DoFs at a node is the same as its number of antennas,
and a node can use its DoFs for either SM or IC [2-13].
To understand the limitations of existing DoF model, let’s
first re-examine state-of-the-art IC strategies in existing DoF
models from the networking research community. Under
existing IC schemes, all interference at an interference chan-
nel are cancelled at either Tx side or Rx side, regardless of
interference strength in different directions in the eigenspace

e An abridged version of this paper appeared in the Proc. IEEE INFOCOM
2019, Paris, France [1].

o Y. Chen is with NVIDIA Corporation, Santa Clara, CA 95054, USA.
E-mail: yc.chen@ut.edu

e S.Li, C. Li, Y.T. Hou and W. Lou are with Virginia Tech, Blacksburg, VA
24061 USA. E-mail: {shaoran, licz17, thou, wjlou}@uvt.edu. (Correspond-
ing author: Y.T. Hou)

o H. Zeng is with the Michigan State University, East Lansing, MI 48824
USA. E-mail: hzeng@msu.edu.

e B. Jalaian is with the U.S. Army Research Laboratory, Adelphi, MD 20783
USA. E-mail: brian.a.jalaian.civ@mail.mil.

[2-13]. The number of DoFs consumed in IC is solely based
on the number of interfering data streams. That is, given
the number of transmitting data streams, the number of
DoFs required by IC under a highly correlated interference
channel would be exactly the same as that under a channel
with uniformly distributed singular values, without any
discrimination on channel conditions in different directions.
However, interference strength varies greatly in different
directions in the eigenspace for an interference link, as we
shall see in an example (experiment) in Section 2. As a
consequence, the existing IC models may not utilize DoF
resources efficiently, as they blindly consider the impact of
a weak interference signal the same as a strong interference
signal.

Related Work In the literature, exploring the difference
in signal strengths from different sources/directions has
been investigated at PHY layer. Some representative works
include channel estimation for low-rank channels [19, 20],
estimating the number of sources based on Akaike’s in-
formation criterion (AIC) and minimum description length
(MDL) techniques [21, 22], and beamforming designs based
on interference alignment (IA) technique [23, 24]. However,
results of these studies were at the PHY layer and cannot
be directly used to address the DoF utilization problems for
DoF-based IC in a multi-link MIMO network, which is the
focus of this paper.

DoF-based IC models have been actively studied in the
Information Theory (IT) and networking communities. In
the IT community, DoF characterizations are mainly based
on idealized channel models, ie., either full rank (e.g.
[25, 26]) or rank-deficient with zero singular values (e.g.
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[27-30]). Such idealized channel rank models do not exactly
capture what happens in reality, where singular values for
weak interference are not exactly zero. As a result, they
cannot closely represent channel behaviors in the real world.
In the networking community, most existing DoF-based
models assume that channels are of full rank [2-13]. To
measure the footprint of interference (and its impact), the
so-called protocol model (or disc model) has been widely
used [2-13], where an Rx node within a predetermined in-
terference range is considered interfered and would require
DoFs to cancel the interference, while an Rx node outside
that range is considered to experience negligible interference
(i.e., no IC is needed). The main issue with this model is
that, for an Rx node (inside the interference range), it does
not differentiate interference strength in different directions
in the eigenspace and thus would require DoFs to cancel
interference in all directions (for the same Rx node) even
though the signal strength in certain directions may be very
weak. The weakness of these models is further amplified
when the number of antennas at Tx/Rx nodes becomes
large and channels exhibit high correlation. As a result, these
models cannot exploit the full potential of MIMO networks.
In contrast, instead of using a disc (or interference range),
this paper proposes to differentiate interference strength by
examining singular values in the eigenspace regardless of
the location of the Rx node. Strong interferences (corre-
sponding to large singular values) are cancelled by DoFs
while weak interferences (corresponding to small singular
values) are treated as noise in throughput calculation. This
approach provides efficient DoF utilization that can offer
higher throughput.
Scope and Contributions In this paper, we aim to improve
DoF utilization for DoF-based IC studies for the networking
community. We propose to exploit the differences in interfer-
ence signal strength among different directions by examin-
ing singular values in the eigenspace and propose to expend
DoFs only to cancel strong interference. In other words, we
want to conserve precious DoFs from cancelling the weaker
ones. Specifically, we introduce the concept called “effective
rank threshold.” If the singular value (i.e., the interference
strength at the corresponding direction in the eigenspace)
is greater than the threshold, then such interference will be
cancelled with DoFs. But if the singular value is smaller than
effective rank threshold, it will be treated as noise before
IC. Although there might be throughput loss due to un-
cancelled weak interference, precious DoFs can be saved
to support more data streams which in return improves
network throughput. The main contributions of this paper
are summarized as the following;:

o This is the first paper on DoF-based IC strategies in
networking research that exploits interference signal
strengths in the eigenspace. Existing DoF models can-
cel interference with precious DoFs on all directions
in the eigenspace. Instead, we propose to perform
IC with DoFs only on those directions with strong
signals in the eigenspace.

o We introduced the concept of effective rank thresh-
old to differentiate strong and weak interference in
different directions in the eigenspace on an interfer-
ence link. Based on this effective rank threshold, IC
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will only be performed for strong interference corre-
sponding to large singular values in the eigenspace,
while weak interference will be treated as noise in
throughput calculation.

o We investigate the fundamental trade-off between
throughput and effective rank threshold, using a
general MU-MIMO network. Through simulation re-
sults, we show that there exists an optimal trade-off
between throughput and effective rank threshold. We
show that the network throughput under optimal ef-
fective rank threshold setting is considerably higher
than that under existing DoF models.

« To ensure our new IC model is feasible at the PHY
layer, we propose an algorithm to determine weights
for all Tx and Rx nodes that can offer our desired DoF
allocation. Through an iterative process, our algo-
rithm can successfully find the beamforming weights
for all Tx and Rx nodes such that the strong inter-
ferences beyond the effective rank threshold can be
suppressed close to zero, thus ensuring the feasibility
of our new IC model.

The remainder of this paper is organized as follows. In
Section 2, we use a motivating example to illustrate our
new IC idea. Section 3 shows how to determine the effective
channel rank of a link. In Section 4, we present the DoF IC
model based on effective channel rank. Section 5 analyzes
the trade-off among total network throughput, DoFs for
SM, and effective channel rank. In Section 6, we develop
an algorithm that can find Tx and Rx weights at each node
to ensure feasibility at PHY layer. Section 7 concludes this

paper.

2 A MOTIVATING EXAMPLE

In this section, we first use an experiment to examine
the disparity in singular values of a link. Then we use a
motivating example to illustrate our main idea.

An Experiment We have conducted experiments to
examine channel conditions in an indoor environment. In
this experiment, we build two nodes to form an 8 x 8 MIMO
channel. Each node is built with 8 USRP N210 devices [31],
a OctoClock-G CDA-2990 device [32], a 10 GbE-switch, a
desktop computer, and GNU radio software package [33].
The 8 USRP devices are connected to the 10 GbE-switch
via CAT5E Ethernet cables and synchronized using the
OctoClock-G CDA-2990 device (providing external 1 PPS
and 10 MHz reference clock), as shown in Fig. 1(a). We
install GNU Radio (in Ubuntu) on the desktop computer to
control the USRP devices. Such a MIMO node can achieve
25 MHz of instantaneous bandwidth (52 sub-carriers) in 2.1
GHz band for wireless signal transmission and reception.
We perform a set of experiments under LOS/NLOS with
linear or rectangular arrays in an indoor environment to
measure the MIMO channel matrices. The floor plan is
shown in Fig. 1(b), where LOS and NLOS channels are
measured when the Tx node is located at locations 8 and
13, respectively.

Then we perform singular value decomposition (SVD) of
measured 8 x 8 MIMO channel matrices. Fig. 2 presents the
singular values in each direction under different settings.
As shown in Fig. 2, deficient channel rank (lower than the
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(a) A portable 8-antenna wireless testbed.
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(b) The floor plan of channel measurement scenario.

Fig. 1: An experiment to measure channel matrices.

number of Tx/Rx antennas) can be seen throughout our
experiments, i.e., zero or near-zero for the least singular
value. More important, in many cases, we observe that the
remaining singular values vary greatly. This means signals
in some directions are much stronger than the others on the
same link. This phenomenon is mainly due to the lack of
rich multipath propagation and spatial separations, leading
to correlations among the spatial channels within the MIMO
link [34, 35]. As a result, the transmit power from a node is
generally not uniformly distributed in all directions of the
channel’s eigenspace. |

Based on our observation from the experiment, we ask
the following question: Can we exploit such disparity in
singular values (interference signal strength) to conserve
DoF in IC? Now we use the following example to illustrate
our main idea.

Considering a simple two-cell MIMO network shown in
Fig. 3. There are two APs (AP1 and AP2) and two users
(u1 and uy). Suppose each node (AP or user) is equipped
with 12 antennas. AP1 transmits z1; data streams to user u;
(marked with solid arrow lines) which interfere with user u;
(marked with dashed arrow lines). Likewise, AP2 transmits
concurrently zy> data streams to user up. For the time being,
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Fig. 2: SVD of an 8 x 8 MIMO channel in our experiment.
Carrier frequency is 2.1 GHz. Antenna spacing is 5 cm. (a)
LOS channel with linear array. (b) NLOS channel with linear
array. (c) LOS channel with rectangular array. (d) NLOS
channel with rectangular array.

let’s neglect the interference from AP2 to user u;.!

Consider the interference channel Hj, in Fig. 3. We use
the Kronecker channel model to characterize the channel
correlations [35]. We can write Hy, as Hyp = R})/CZHWR%E,
where H,, is an 12 x 12 random matrix with zero-mean i.i.d.
complex Gaussian entries, R})/CZ (R%z) is the 12 x 12 square
root matrix of the transmit (receiver) antenna correlation
matrix. The (i, j)-th element in the correlation matrix R;x
and R, is calculated as p,"xﬁ "and p)’7/!, where p;x € [0,1)
and p,» € [0,1) represent the level of correlation between
any two adjacent antennas (in a linear antenna array) at the
respective Tx and Rx nodes [36, 37]).

For different values of p;x and p,y, we can simulate
the expectations of singular values o of H Hjy, which
we show in Fig. 4. It is easy to see that for any given
value of p,x and p,, the expectations of singular values
vary significantly, which is consistent with our experimental
result for the 8 x8 MIMO channel case in Fig. 2. Here, a high
singular value indicates that a large portion of AP1’s power
is projected into the direction of the corresponding singular
vector. Likewise, a close-to-zero singular value indicates a
close-to-zero portion of AP1’s power is projected into the
direction of the corresponding singular vector. When the
values of p;, and p, increases (i.e., with increased channel
correlation), more and more expectations of singular values
diminish toward zero.?

Figure 4 suggests that the interference strength varies
significantly in different directions in its eigenspace. Under
traditional IC scheme (see, e.g., [2-11]), all interference from

1. Such weak interference will be considered in throughput calcula-
tion (see Section 5).

2. Apart from correlation, singular values can also be zero due to the
presence of “key-hole” effect [38, 39].
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Fig. 3: A motivating example with two APs and two users.
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Fig. 4: Simulation results of expectations of singular values
E[o] under different levels of correlation (p;x and p, ).

AP1 to uy shall be cancelled by either AP1 (Tx side, using z»»
DoFs) or up (Rx side, using z11 DoFs). This approach does
not differentiate strong and weak interferences in different
directions and thus blindly cancels them all with precious
DoPFs.

To explore this potential opportunity, we propose to
exploit the difference of interference power strength in each
direction and only cancel the strong interference with DoFs
whiling treating the weak ones just as noise. In other words,
by exploiting the disparity in interference signal strengths
in the eigenspace, we could conserve precious DoFs from
cancelling the weaker ones.

Specifically, as shown in Fig. 4 ((c) and (d) in particular),
the vast majority interference power only appears in the
directions corresponding to the high singular values of Hy,,
which can be properly cancelled by using a small number
of DoFs. But the remaining weak (small) interference power
in these figures is better treated as noise, rather than to be
cancelled with precious DoFs. Although there may be some
throughput loss due to un-cancelled weak interference, the
DoFs savings could be used to transport more data streams
(SM). By judiciously exploiting the threshold used to dif-
ferentiate strong and weak interference, one could achieve
a better design objective (e.g., more data streams and/or
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Fig. 5: Total DoFs for SM and throughput performance as
a function of threshold setting (used to differentiate strong
and weak interferences). (a) Total number of data streams in
the network. (b) Network throughput.

higher throughput) than blindly cancelling all interferences
(weak or strong) with DoFs, as in existing approaches [2—
11].

To show the potential benefits, suppose we set z1; = 12 in
the example in Fig. 3. Following traditional IC approach (i.e.,
no differentiation between strong and weak interferences),
AP2 cannot send any data stream to user u, as there is no
DoF left at user u» to cancel interference from AP1. On the
other hand, if u, treats the interference coming from AP1
in the direction corresponding to the least singular value of
Hi, as weak interference and does not use a DoF to cancel
it, then it only needs to use 11 DoFs for IC from AP1 to
upy and use the remaining one to support one data stream
transmission from AP2 to u. Following the same token,
as more interferences from AP1 (corresponding to the least
singular values) are treated as weak interferences and thus
not to be cancelled with DoFs, more DoFs could be saved
and be used to support SM from AP2 to us.

As shown in Fig. 5(a), by increasing interference thresh-
old n (more on this notation in Section 3) to differentiate
strong and weak interferences, more DoFs can be conserved
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Fig. 6: A general MU-MIMO network with multiple Tx
nodes and Rx nodes.

from cancelling a fewer number of weak interferences at uy
and more data streams (SM) can be sent from AP2 to u,. Fig.
5(b) shows the total network throughput on all data streams
(from AP1 to u1 and AP2 to uy) as a function of interference
threshold 5. Clearly, there is a trade-off among total network
throughput, DoFs for SM, and effective channel rank. In
particular, there is an optimal knee point that offers the best
trade-off between total throughput and effective channel
rank (determined by interference threshold 7).

3 DETERMINE EFFECTIVE CHANNEL RANK OF A
LINK

In this section, we present the system model and introduce
the concept of “effective channel rank.” Consider a general
MU-MIMO network (see Fig. 6) with a set KT of Tx nodes
and a set KR of Rx nodes, respectively. Each Tx node i € KT
and Rx node j € KR are equipped with N[ and N}{ antennas,
respectively. Under MU-MIMO, a Tx node is able to transmit
to multiple Rx nodes concurrently while each Rx node can
receive from at most one Tx node. For a Tx node i € K7,
denote 7(I.R as the set of its Rx nodes. For an Rx node j € k%,
denote s(j) as its source Tx node. Table 1 lists key notations
in this paper.

3.1

We first differentiate strong and weak interferences on a
single interference link and use this differentiation to de-
termine its effective rank. For a single interference link
k — j, instead of dealing directly with the fast fading

Effective Rank of A Single Interference Link

channel matrix Hy; € cN W xNf , we take into consideration
of transmit power and path loss fading. Denote Py as the
transmit power at Tx node k and Ly; as the path loss from
Tx node k to Rx node j. Define Y; (an N? X N? symmetric
matrix) as the perceived channel covariance matrix at Rx

node j for the link k — j:
PiLy;
Yij= ];VTk]
k

where X¥ is the conjugate transpose of X. In matrix Y,
each entry represents the received interference power on the
corresponding channel on interference link £ — j. We will
use Yy ; to determine the effective rank of interference link
k—j.

TABLE 1: Notation

Symbol Definition
le,. Number of DoFs consumed by Rx node j to cancel
interference from Tx node i to Rx node j
d;rj Number of DoFs consumed by Tx node i to cancel
interference from Tx node i to Rx node j

H;; Channel matrix from Tx node i to Rx node j
KT Set of Tx nodes
KR Set of Rx nodes
fKiR Set of Rx nodes for Tx node i
Lij Pathloss from Tx node i to Rx node j

N JR Number of antennas at Rx node j
N ,T Number of antennas at Tx node i
P; Transmission power at Tx node i
Tij Effective rank of H;;

s(J) Rx node j’s serving Tx node
U; Weight matrix at Tx node i
V; Weight matrix at Rx node j
Zix Total number of outgoing data streams at Tx node i
Zsj Total number of incoming data streams at Rx node j
Zij Number of data streams from Tx node i to Rx node j
n Normalized effective rank threshold

XT+71 The f-th column of matrix X

X" Conjugate transpose of matrix X

To differentiate strong and weak interferences, we em-
ploy the so-called best rank-r approximation of a matrix [40].
Under this approximation, Yj; is decomposed through an
SVD process and we retain only the first r largest singular
values and their corresponding singular vectors and use
them as an approximation.

Fact 1 For a matrix A € C™"(m > n), denote A as a rank-r
matrix approximation of A with r € {1,2,--- ,n}. The optimal
solution to minimum approximation error

min A-A|., s.t. rank(A) =r
Aecmxn i | | |F (2)
where || - || denotes Frobenius norm, is
r
A = Z a'iu,-le,
i=1

where o, w;, and v; are singular value, left and right singular
vectors respectively from the SVD of A, ie, A = 3, o-l-'u,i'ulH
and o1 > 0 > -+ = 0. The minimum approximation error (i.e.,

2

optimal objective value for (2)) is \| X1, .4 07

The SVD process in Fact 1 clearly shows the relative
strength of interferences in different directions. The larger
the singular value is, the stronger the interference in that
direction. Based on the desired level of approximation error,
we can approximate a rank-n matrix A by a rank-r matrix A
with the r-strongest singular values of A through (1).

To apply best rank-r approximation on a single interfer-
ence link Yy ;, define 6 as a threshold for singular values and
denote ry; as the effective channel rank of Hy;. Then ry; is
given by

v
rij = 1{ou(Ye)) = 6}, ©)

=1

where 07(Yy;) is the [-th singular value based on SVD of
Yy;, and I{event} is an indicator function, which is 1 if
event is true and 0 otherwise.
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3.2 Interference Threshold at an Rx Node

The setting of effective channel rank can be determined by
the threshold 6 in (3) for eigenvalues of the interference
perceived at Rx nodes. However, in a network with a set
of Tx and Rx nodes and multiple interference links, one
cannot simply apply the same absolute threshold value for
all Rx nodes. This is because throughput is measured in a
signal-to-interference ratio sense while the received power
from intended transmitter differs at Rx nodes depending
on their locations. An Rx node with higher signal power
(from its intended transmitter) could tolerate a stronger
interference. As a consequence, the interference threshold
(used to distinguish strong/weak signals) differs at each Rx
node. As an example, consider Rx nodes j and / in Fig. 6. Rx
node j is closer to its (intended) Tx node i than Rx node [
to its (intended) Tx node k. For the same transmit power at
i and k, Rx node j will receive a higher signal power (from
its intended transmitter) and could thus tolerate a stronger
interference. Then, for the interference links at Rx node j
(k — j and m — j), the threshold used to differentiate
strong and weak interference should be larger than that
used to differentiate stronger and weak interference on
interference links (i — [ and m — [) for Rx node /. Based on
the above discussions, for an Rx node j, denote 6,; as the
threshold for singular values on its interference link. Then
we should have 6,; > 6,;.

Although we let each Rx node have its individual thresh-
old 0., it is not easy to present results and demonstrate our
idea if all the 6.,’s are optimized independently. To address
this issue, we introduce a common scaling factor n, which
is defined by the rank threshold 6,; normalized by Rx node
J’s received intended signal power, i.e.,

Psj)Ls(j)j

T
Nx(j)

O*J‘:T]

Therefore, instead of optimizing the settings of 6.; for each
individual Rx node j, we simply optimize the common
factor n across all received nodes. As we will show in our
simulation results, this is sufficient to demonstrate the main
idea of this paper. It is possible to optimize each threshold
6.; independently with higher complexity, which we leave
for future work.

Based on this definition of common scaling factor 7, the
effective rank ry; of Hy; can be determined by the number
of Yi;’s singular values that are greater than or equal to the
threshold nw That is,

s(j)

N;
rk,zz]l{m(m)Zn%},keﬂjeﬂjeﬂ
=1 s(f)

)
where Yy ; is the channel covariance matrix perceived at Rx
node j for the link k — j, as defined in Eq. (1).

Note that any negligible interference for IC will be
treated as noise in the throughput calculation (see Section 5).

3.3 Effective Rank of An SM Link

For SM from node i to node j (intended transmission), the
effective channel rank of H;; can be determined by

NR

J
r[j=Z]].{O'[ (HIFJIH'J) ZQSM}’ iE?(T,jEK-R,

=1

where gy is the rank threshold for singular values on
SM link i — j. Note that the DoF savings by exploiting
strong and weak interference can be made available for
SM (more independent data streams) or diversity, both of
which have the potential to increase the throughput. To
focus on using DoFs for IC at interference links, we do not
explore SM-diversity trade-off in this paper. Therefore, we
will try to transmit more data streams as long as we have
DoFs available for SM and assume sy is a given constant
throughout the paper.

3.4 Channel Model

We consider the following channel model unless otherwise
stated. Considering a high SNR setting, we assume each Tx
node has a fixed (constant) transmit power P; = 36 dBm.
The background noise power is set to -169 dBm/Hz and
the channel bandwidth is 10 MHz. The path loss fading
L;j is given by 140.7 + 36.7 log,,(D;,;) (in dB) (as suggested
by 3GPP for small cells [41]), where D; ; is the distance
between Tx node i and Rx node j (in km). For fast fading
channel H;;, it is modeled by Kronecker channel model, i.e.,
H;; = Rg)/(ZHWR%?, where R%g is an NJR X NF matrix with
each entry containing square root of the receive antenna
correlation while R})/Cz is an NI x NT matrix with each entry
containing square root of the transmit antenna correlation.
H,, isan Nl.T X N}{ random matrix with its entries containing
zero-mean ii.d. complex Gaussian random numbers. The
(k,1)-th element of the correlation matrix R,, and R;, is
taken here as p!*~!l and p € [0, 1) is the correlation level.

We assume a centralized network and all channel state
information (CSI) is sent to a central controller. How to
estimate and feedback CSI in a MIMO network has been
widely investigated in the literature. For a static network,
although a wireless channel is time-variant, it changes rather
slowly and the channel has a long coherent time. This allows
us to obtain relatively accurate CSI with infrequent updates.
In such an environment, the overhead in CSI acquisition
tends to be acceptable and has been investigated in literature
[42-48]. These studies showed practical designs to obtain
CSI at the transmitter side in a stationary network with
acceptable overhead.

4 |IC BASED ON EFFECTIVE CHANNEL RANK

In the last section, we showed how to differentiate strong
and weak interference at an Rx node by setting a threshold
for singular value and use this threshold to determine effec-
tive channel rank. In this section, we show how to perform
IC (for strong interference only) in an MU-MIMO network
based on this effective channel rank.

Note that DoF allocation for IC cannot be done arbitrar-
ily and must follow certain rules to be feasible. By “feasible”,
we mean that all the strong interference can be cancelled at
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the PHY layer. Section 6 will present details on PHY layer
feasibility for our DoF allocation.

If DoF allocation for IC and SM is feasible at the PHY
layer, then multiple data streams can be transmitted con-
currently while all strong interference under best rank-r
channels is cancelled. The remaining (un-cancelled) weak
interference will be treated as noise and included in the
throughput calculation in Section 5.

We employ the DoF-based IC model in [49] to perform
DoF allocation. In [49], the rank of a channel is assumed to
be given a priori. But in this paper, the rank of a channel is a
function of effective rank threshold.

4.1 Modeling of DoF Constraints

DoF Constraints for SM  For an intended transmission
from Tx node i to Rx node j, denote the number of data
streams on this link as z;;. Denote x;(¢) as a binary variable
to indicate whether Tx node i is active or not at time ¢,
ie, x;(t) = 1 if Tx node i is transmitting at time ¢ and 0
otherwise. Likewise, denote y;(f) as a binary variable to
indicate whether Rx node ; is active or not at time ¢, i.e.,
y;(t) =1if Rx node j is receiving at time ¢ and 0 otherwise.

If Tx node i is transmitting, then the total number of
data streams transmitted to different receivers (under MU-
MIMO) cannot exceed the total number of antennas at node
i (i.e., NI). We have

x() < Y zip(1) < Nixi(e), ie K"

P e R
.]EKi

©)

Similarly, if Rx node j is active at time 7, then the
total number of DoFs used for reception (from only one
transmitter under MU-MIMO) cannot exceed the number
of antennas at node j (i.e., N}{). We have

i) < 2ij(1) S Ny (1), ie K, j ek (6)

Taking into consideration of the effective rank of the SM
link i — j, the number of data streams that can be sent
on this SM link cannot exceed the link’s effective rank (see
Section 3). We have

zij(1) <rij(0), ieK', jexR )

For Rx node [ that is not Tx node i’s intended receiver,
ie, | ¢ ‘KiR, the transmission at Tx node i is considered
interference (instead of SM) and there is zero data streams
over this link. We have

() =0, keXK',leKR ¢Kr (8)

DoF Constraints for IC For interference from Tx node k to
Rx node j, denote dzj (t) as the number of consumed DoFs
at Tx node k and dE.(t) as the number of consumed DoFs at
Rx node j that are needed to cancel this interference. Based
on [49], a collaborative DoF consumption at both interfering
Tx node k and Rx node j is the most efficient approach for
IC when the rank of the interference channel is not full, as
in our case. Denote 11/. and 1113. as two binary variables
to indicate whether Tx node i (or Rx node j) consumes
any DoFs for IC from k to j. That is, 1{. = 1 if Tx node
k consumes DoFs for IC from k to j, 1 K= 0 otherwise;

7

lffj = 1 if Rx node j consumes DoFs for IC from k to j,
11:]. = 0 otherwise.
If x¢ (f) =1 and y;(r) = 1, then

dy (D1 (0) + dg (D15 (1) =

1£3] i+k ( )
min {158,(1) D" 2 () + 1,0 Y. 2 (1), rig(0) ¢
lekKR iekT

(15,0, 18,0) # 0,0), k e KT, j e K (9b)

That is, the interference from k to j can be cancelled by
consuming DoFs on Tx node & only (when (1£j(t), 1113j(t)) =

(1,0)), Rx node only (when (1{/.(:),11,3](:)) = (0,1)), or

both Tx and Rx nodes (when (1{].(;), 1}}/.(;)) = (1,1)).
Constraint (9) can be reformulated as mixed integer linear
(MIL) constraints, which is omitted here to conserve space.

DoF Constraints at A Node A node can use its DoFs
for SM and/or IC, as long as the total number of consumed
DoFs does not exceed the total available DoFs at the node.
We consider DoF constraints at Tx and Rx nodes separately.
If node i is an active Tx node, we have

if x;(1) = 1, then Z 2 (1) + Z dh (1l < NF, i e kT
je’K’.R leKR
' (10)
If node j is an active Rx node, we have

if y;(t) = 1, then Z i (0)+ Z (D15, (1) < NE, je KR
ieKT keXKT
(11)

For constraint (10), it can be reformulated by incorporat-
ing binary variable x;(¢) into the expression as follows:

D+ Y di01)(0) < Nixi() + (1= x;(0)B, i e K,
jekR lekR
(12)

where B is a large constant, which can be set as B =
Siext NI+ 3, jekR NF to ensure that B is an upper bound
of yjexr djy (1).

Similarly, constraint (11) can be reformulated as follows:

Z zij(1)+ Z di;(01F;(1) < NJy;(D+(1=y;(1)B, j € KX
ieKT keXkT (13)

Constraints (12) and (13) can be reformulated as mixed in-
teger linear constraints, which are omitted here to conserve
space.

4.2 An Example

As an example to illustrate the relationship between total
achievable data streams (SM) in the network and 7 (the
common scaling factor to differentiate strong and weak
interference and effective channel rank), consider the simple
MU-MIMO network in Fig. 7. Suppose our objective is to
maximize the sum of log of all data streams (SM) in the
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Fig. 7: An instance of MU-MIMO network topology.

network with the consideration of fairness [50]. Then we
have the following optimization problem:

max Z Z log(z;;)

ieKT jekR
s.t. SM constraints: (5) — (8);
IC constraints: (9);
Node’s DoF constraints: (12), (13),

where z;;, dzj, dEi’ 1%}. and 1Ej are variables while all other
symbols are constants.

As discussed earlier, the constraints in the above for-
mulation can be reformulated into mixed integer linear
constraints. However, the objective function (sum of log)
remains non-linear. Fortunately, the sum of log objective
can be reformulated (along with the MIL constraints) as
a second order conic program (SOCP) [51]. Off-the-shelf
optimization tools, such as Gurobi [52], can solve this SOCP
(with integer variables) optimally.

Some numerical results follow. Suppose the six Tx nodes
in Fig. 7 are uniformly generated in a circle within a radius
of 700 m with a minimum of 200 m distance between
every two Tx nodes. For each Tx node, there are two Rx
nodes uniformly generated with a radius of 250 m of the
Tx node. Each Tx and Rx nodes are equipped with 16
and 12 antennas, respectively. We follow the channel model
describe in Section 3.4, and the correlation level p is chosen
from {0.2,0.4,0.6}.

Fig. 8 shows the effective ranks on three representative
links (¢ — p,a — ¢q and a — m) as a function of rank
threshold scaling factor n (in log scale). We draw 5 in log
scale since singular value distribution is more like a log-
shape other than a linear shape (see Fig. 4). As expected, all
effective channel ranks are decreasing steadily. For p = 0.2
shown in Fig. 8(a), note that r,, remains full rank until n
becomes greater than 0.4 while 7., and r,, starts to decrease
when 7 starts to increase from 0. This is because Rx node p
is close to the interfering Tx node a than ¢ and m and thus
experience much stronger interference from Tx node a than
g and m. On the other hand, r,,, drops very fast because Rx
node m is further away from Tx node a than p and q. When
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Fig. 8: Effective ranks on interference links versus rank
threshold scaling factor 7.

n is greater than 0.12, r4, = 0 and Rx node m is considered
out of interference range of Tx node a. For p = 0.6 shown
in Fig. 8(b), effective ranks have a similar trend but drop
faster than those when p = 0.2, since the higher channel
correlation causes interference strength more concentrated
in few directions (see Fig. 4). A similar conclusion can be
found for p = 0.4, and we omit the figure to conserve space.
Clearly, the setting of rank threshold scaling factor n has
different effect on different interference links in terms of
effective rank determination.

Fig. 9 shows the total number of data streams in the
network from our optimal objective (averaged over 10 ran-
dom network instances similar to Fig. 7). As shown in this
figure, for a given p, the total number of data streams
steadily increases from 24 to 96 and then flattens out. This
is because the higher the rank threshold scaling factor 7, the
lower the effective channel ranks on interference links in
the network. As a result, fewer DoFs are needed to cancel
interferences and more DoFs can be allocated for SM. When
n is greater than 20, the number of data streams cannot be
further increased, either there is no room to further decrease
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Fig. 9: Total number of data streams in the network.

of effective ranks on interference links (all effective ranks
are 0), or further decrease of effective ranks on interference
links will not improve objective value, due to the bounds
on effective ranks on SM links. We also observe that for the
same rank threshold 7, a higher number of data streams
can be achieved for higher channel correlation level, due to
lower effective ranks.

The above example demonstrates the impact of effec-
tive rank threshold setting on the number of data streams
that can be transported in the network. However, a larger
number of data streams in the network does not necessarily
mean a higher throughput, due to un-cancelled interference
(considered as noise) and channel hardening effect [53]. In
the next section, we investigate the impact of effective rank
threshold setting on achievable throughput in the network.

5 THROUGHPUT CALCULATION AND OPTIMAL
THROUGHPUT-r1 TRADE-OFF

This section presents our main results. We first calculate
the actual throughput for a given DoF allocation for SM
and IC. Then we show the trade-off between throughput
maximization and interference threshold scaling factor 5. To
better demonstrate our main idea, we assume the Tx and Rx
weights are already found for a given DoF allocation in this
section. We will show one implementation on how to derive
these weights in Section 6.

5.1 Throughput Calculation

Assume a DoF allocation for SM and IC is feasible for an
MU-MIMO network. Then the network throughput is the
sum of the throughput achieved on each data stream under
SM. So the key question is how to calculate throughput for
each SM stream.

For each data stream, we can calculate its throughput
by finding its SINR and then apply the Shannon capacity
formula. The only subtlety here is that the SINR calculation
should include all interferences that this data stream is suf-
fering from, which includes all un-cancelled interference at
PHY layer and white noise. To do this, we need to go to the

9

PHY layer and work with the transmit and receive vectors
for each data stream. Denote U; € CNi*%+ as the weight
matrix at Tx node i with z;. outgoing SM data streams and
V; € CN%i as the weight matrix at Rx node j with z,;
incoming SM data streams. Assume we have additive white
Gaussian noise (AWGN) with zero mean and variance ng. To
satisfy the transmit power constraint at node i and decoding
power constraint at node j, the weight matrices must satisfy

Tr(U,UF) =1, T(V;VE) =1, (iek".jek®).
In Section 6, we will show one implementation on how
to derive U; and V; based on a DoF allocation while
guaranteeing PHY layer feasibility. For now, let’s assume
the U;’s and V;’s are already found. Define the partition
of matrix U; as [U;;, U, -+ U, j, |, where ji, o, . ju
are Tx node i’s M recipients, ie., {j1,j2. " ,jm} = K&,
then U, ;,U; j,, - ,U; j,, are sub-weights corresponding
to Rx nodes j1, ja, ..., ju, with dimensions N x z;;,, N} x
Zijs NI X 24y (2in = XM 245,), respectively.

For any j € KX, the signal-to-interference-plus-noise
ratio (SINR) of the f-th stream on link i — j is then given

by

f
SINR = Yy 14)
i 7 U IH o ] f
Vit Qiv; Yij
where (-)[*/1 is the f-th column of () and
f_ p.y. vy IHggH e Typlaf 1H gy y7 2]
v;; = PiLi;V; H;3U; 5 U T H VY,
Q; =njln; + ) PiliHLULUY Hy;.
keXT
Finally, the network throughput (in bits/s) is given by
Zij
C=Wo Y > >log, (1 +SINR£), 15)

ieKT jexR f=1

where W is the bandwidth.

5.2 Optimal Throughput-; Trade-off

From the network throughput expression (15), it is evident
that there exists a trade-off between throughput and 7.
When 7 increases, more DoFs will be made available to
support a larger number of SM data streams z;; (as shown
in Section 4) and we have a larger value of z;; in (15) to
increase throughput. On the other hand, higher 7 means
more weak interferences are not cancelled and left in the net-
work. This will decrease the SINR term in (15) and decrease
throughput. Thus, we have a trade-off. Unfortunately, due
to the non-convex nature of (15), a closed-form expression to
explore optimal throughput-n trade-off remains unknown.
In the rest of this section, we use simulation study to explore
an optimal throughput-n trade-off and gain insights.

We use the same MU-MIMO network setting in Sec-
tion 4.2. We randomly generate 10 instances and evaluate
the average performance among the 10 instances. Fig. 10
shows network throughput vs. 7 under different channel
correlation levels p. Note that = 0 stands for traditional
DoF IC that uses DoFs to cancel interference indiscrimi-
nately in all directions in the eigenspace. For p = 0.2, we
can see network throughput keep increasing until threshold
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ing threshold 7. Kronecker model for both intended and
interference channels.

n = 0.3, as more data streams are supported (see Fig. 9) while
weak (un-cancelled) interference has negligible impact (Sec-
tion 6 will show the interference level versus ). However,
as we further increase 7, throughput decreases due to un-
cancelled interference. Throughput under n = 3 can be as
good as that with traditional IC (i.e., n = 0). By increasing n
larger than 3, even though more DoFs can be made available
for SM, un-cancelled interference will play a dominant role
and will result in worse performance than traditional IC.
For p = 0.4 and 0.6, we can see a similar trade-off. For
this network setting, the optimal effective rank threshold
n should be set to n = 0.3,0.2 and 0.16 for p = 0.2,0.4 and
0.6, respectively. The peak throughput (achieved at optimal
n) is 34.9%, 19.2%, 5.6% more than that achieved at n = 0
for p = 0.2,0.4 and 0.6, respectively. We also note that with
a higher channel correlation level p, network throughput
becomes lower. This is because high channel correlation also
hinders MIMO’s SM capability, which results in a lower
throughput performance.

In the scenarios where intended links present low cor-
relations while interference links present high correlations
(e.g., high correlation caused by poor scattering or “key-
hole” effect [38, 39]), our rank-based IC can be even more
beneficial. To demonstrate this, we consider two different
scenarios. First, fast fading for intended links is modeled
by Rayleigh channel while fast fading for interference links
is modeled by Kronecker model. Second, fast fading for
intended links is modeled by Rayleigh channel while fast
fading for interference links is modeled by reduced-rank
model [54-56].

For Fig. 11(a), fast fading for intended links is mod-
eled by Rayleigh channel, ie, H;; = H,, (i € KT,j €
7(I.R), while fast fading for interference links is modeled
by H;; = RIPHLRY (i € KT,/ € KR, j ¢ %kR), with
p € {0.4,0.6,0.8}. As shown in Fig. 11(a), network through-
put follows a similar trend as Fig. 10 as we increase ef-
fective rank threshold n. However, we observe that for a
higher channel correlation level p at interference links, we
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Fig. 11: Performance of network throughput under in-
creasing threshold 7. (a) Kronecker model for interference
channels and Rayleigh model for intended channels. (b)
Rank-reduced channel model for interference channels and
Rayleigh model for intended channels.

obtain a much higher throughput gain by setting optimal
effective rank threshold 5. Specifically, the peak throughput
(achieved at optimal ) is 27.7%, 29.1%, 38.6% more than
that achieved at n = 0 for p = 0.4,0.6 and 0.8, respectively.
This is because well-conditioned intended channels have
the capability to achieve higher throughput when carrying
more data streams, thus can fully benefit from exploiting
interference signal strength in the eigenspace on correlated
interference channels.

Different from Fig. 11(a), Fig. 11(b) shows the results that
fast fading for intended links is still modeled by Rayleigh
channel while interference links are modeled by reduced-
rank channel model [54, 55]. Reduced-rank channel model
generates channels by letting H;; = AB, where A is an N] xr
full-rank matrix with its entries containing zero-mean i.i.d.
complex Gaussian random variables, and B is a r x N}.2 full-
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Fig. 12: Comparison of network throughput achieved by
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rank rectangular unitary matrix, where r < min{N[, N}}.
This model can guarantee that the channel is of rank r (with
probability 1). In our simulation experiment, the rank of an
interference channel r is randomly chosen from {4,5, - -- , 8}
and {6,7,---,10}, respectively. Fig. 11(b) also presents the
throughput-n trade-off. We observe that the highest network
throughput is 68.4% and 59.8% more than that achieved at
n=0forre {45, --,8andr € {6,7,---,10}, respectively.
The trade-off in Fig. 10 and 11 reaffirms that blind IC in all
its directions is not efficient from a throughput perspective.
In Fig. 12, we compare the throughput performance of
our rank-based IC with protocol model-based IC. Under
the protocol model (or disc model), an Rx node within a
predefined interference range is considered interfered and
IC is required for these Rx nodes, while an Rx node outside
that range does not require IC. Protocol model-based IC
is solely based on distance, regardless of the interference
strength in different directions on a MIMO channel. Fig. 12
shows the throughput performance under protocol model-
based IC with the interference range of 500 m, and the
throughput achieved by our IC scheme. The results suggest
that the network throughput by our IC scheme is 9.7%,
9.9%, 16.1% and 26.4% more than that achieved by protocol
model-based IC for p =0.2,0.4,0.6 and 0.8, respectively.

6 PHYSICAL LAYER FEASIBILITY

In Section 5 we assumed feasible weight matrices U; and
V; at the PHY layer are given a priori corresponding to a
particular DoF allocation. In this section, we show how to
find such weight matrices at each node.

As expected, finding these feasible at the PHY layer for
an MU-MIMO network is not trivial. First and foremost,
the Tx weights and Rx weights are interdependent on each
other. That is, the Tx weights for IC depend on the cor-
responding Rx weights, while the Rx weights for IC also
on the corresponding Tx weights. There is no established
guideline in the literature on how to find feasible weight
matrices corresponding to a DoF allocation such that inter-
ference can be cancelled completely. Second, since we are
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exploring effective channel ranks in this paper and some
weak interferences are not cancelled by DoFs, one cannot
guarantee the existence of feasible U; and V; to achieve
perfect (100%) interference-free transmission. This makes
finding feasible weight matrices even more challenging.

Inspired by the weights design in [23, 24], we propose
an iterative algorithm that is able to set the weights based
on the DoF solution for a specific objective as shown in Sec-
tion 4. Different from the designs in [23, 24], our algorithm
focused on cancelling the strong interferences in best rank-r
channels based on given DoF allocations from Section 4. The
goal is to have remaining signal strength in the directions of
strong interferences close to zero.

6.1 Basic ldea

The main idea of our algorithm is as follows. For a given
DoF allocation, we have the data stream allocation (i.e.
zij) on each SM link in the network, which we can use to
determine the dimension for each U; and V;. Then, under
the original channel matrix H;;, to cancel all the inter-stream
and inter-node interference, we must have

U [H;;,Vy, Hip, V), o] = Ag.,i € KL 1, joe € KR, (16)
UMH;V; =0, ie KT, jekR, j¢ KR, 17)

where A;, is a z;. X z;x diagonal matrix with z;, non-zero
diagonal elements.

Although (16) can always be satisfied for all SM links
by standard ZF design, (17), however, cannot be satisfied
for all i € KT, j € KR j ¢ 7(I.R if there are not enough
remaining DoFs to cancel those weak interference on some
links. Recognizing that not all interference can be perfectly
cancelled, we focus our goal on cancelling all the strong
interference, which is based on the best rank—r approximate
channel H; ;= er;jl o 'le via SVD of H;;. That is, we want
to have

U’H;;V; =0, forie kT, jeXkR j¢ KR (18)
The weak (un-cancelled) interference will reduce network
throughput and will be taken into account in throughput
calculation (as we did in Section 5).

Equations (16) and (18) constitute a system of bilinear
equations and a general solution to bilinear equations re-
mains unknown [57]. Instead of finding a feasible solution
to (16) and (18), we propose to minimize the LHS of (18) for
alli e KT,j e KR, j ¢ ‘7(}{, subject to (16). Denote 4y as the
leakage interference in the network,® which is defined as

jexR

dr= 3 3 PiLi |[UR ALV
ieKT jekR

(19)

The problem to solve is to minimize 4y subject to (16).

To do this, we propose a simple yet effective approach
to address the dependency between Tx weight matrices
U; and Rx weight matrices V; by updating each in an
alternating fashion (i.e., fixing U; and update V; and vice
versa). Specifically, in each iteration, Tx weight matrices U;
are optimized first with given Rx weight matrices V; and

3. A similar definition of leakage interference involving only channel
matrix H;; is given in [23, 24].
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channel information. Then we optimize Rx weight matrices
V; with given Tx weight matrices U; and channel infor-
mation. For each weight matrix (either at Tx or Rx node)
optimization, the weight matrix is updated by solving a
minimization problem with the objective Ar; and the up-
dated set of constraints. The iteration terminates if we find
no improvement after a number of consecutive iterations.

6.2 Algorithm Details

Now we describe in detail on how to find weight matrices.
Step 1: Initialization. Initially all the Tx and Rx weight
matrices can be set arbitrarily but have to be full rank
matrices with dimension NT x z;, and N f X z+j, respectively.
Step 2: Optimizing Tx Weights. In this step, channel
information H;; and Rx weight matrices V; are given. We
optimize Tx weight matrices U; so as to minimize leakage

. jgKR ~
interference. Denote AELi = Z]'zwlR P;L;; ||UMH;V ]Hi as the

leakage interference at Tx node i, then

T _ T
Z Ay = Z n{ljl_nALI,i'

KT kT iekT
(20)

It follows that min 411 can be solved separately by solving
|KT]| independent sub-problems miny, AEIJ., i.e., one sub-
problem for each Tx node. (Note that A1 = X;exr AELL. and
AEIJ’S are independent among each other). The constraints
of sub-problem i are based on Tx node i’s IC responsibilities
(i.e., the number of DoFs needed to cancel interference from
i to j at Tx node i (dl.Tj) per our discussion in Section 4). For
Tx node i (sub-problem i), we have the following three cases
to determine the sets of constraints to optimize U;:

min A = min
U

. dl.Tj = 0,j € KR. In this case, Tx node i is not
responsible for cancelling interference from Tx node
i to Rx node j. Thus no constraint is needed in this
case.

« df;=z;and d}; <ry, j € KX In this case, Tx node i
is responsible for cancelling all the interference from
Tx node i to Rx node j. Denote DiT as the set of Rx
nodes that Tx node i is responsible for cancelling all
its interference, i.e., Z)l.T ={j: dl.Tj = Zuj, diTj <rij,J €
KR ;¢ 7(1.R}. Then the following set of constraints is
needed for optimizing U;:

UIHI:I”‘VJ' =0, ] S DT,I' € (]<T.

L

. dl.Tj < z, or diTj = rij,j € KR In this case, the
number of DoFs consumed to cancel interference
from Tx node i to Rx node j is shared between nodes
i and j. That is, Tx node i uses dl.Tj DoFs to cancel
interferences from diT]. directions in the eigenspace,
and the remaining interferences (from df = ri; - dJ,
directions in the eigenspace) will be cancelled by
Rx node j (when optimizing Rx weights later in
Step 3), which guarantees the interference channel
(based on best rank-r approximation) is cleared for
data transmission. Note that in this case Rx weight
matrix V; is not needed in the constraints to up-
date U;; only the channel matrix H;; is needed. Let
I:Il!’."’"] = YL, orwvf’ which represents the channel
information at directions corresponding to the m-th

12

to the n-th largeRst eigenvalues (recall that the SVD of
H;;isH;; = Z;\if'l oyuv;’). Denote ZiT ={j:0< diTJ. <
Zyj OF dl.Tj =rij,j € KR, j¢ ’KIR} as the set of Rx nodes
that Tx node i is partially responsible for cancelling
its interference. Then we have the following set of
constraints:
[1,d].1H
gl
In addition, as a necessary condition to distinguish dif-
ferent data streams, Tx weight matrix U; must have linearly
independent columns. We consider the following constraint
to guarantee the independency among the columns of U;:

1
Ufu, = —1
Zix
Putting together the objective function and all the con-
straints above, for each Tx node i € KT, we have the

following optimization problem for Tx weight matrix U;:

U =0, jeD! ick

13

jekR
. . T H 1 2
OPT-Txi  min 4, = Z PiLi; |[URH; V||,
U; ecNi i JeKR
1
st. UPU; = —1,
Zix
VAH[U, =0, je D],
_ [1,d1.1H —~
A"y, =0, je Dl

ij
where DI = {j : diTj = Zin, dl.Tj <rijje KRy, DI ={j: dl.Tj <
Ziv O diTj =r,j € K¥} and IIII.[’."’”] =L, orwvf

The optimal solution to problem OPT-Tx-i is given by
the following lemma.

Lemma 1 The optimal solution to problem OPT-Tx-i is

)

. [nullspace ([BéB]) eig[NiT—p+1,Zi*+c—p](BAB) .

J S if . T_ .
= if ;e SN} —¢

U=1{ ,

VZix

L . nullspace!#+! ([

ifz[*>NiT—c

where BAB is a matrix from the matrix multiplication

of B by A by B, [B2B]| is a vertical stack of matrices

BAB and C, p = rank(BAB), ¢ = rank(|B2B]), A =
st qeR ~ ~

Z;i% PiLijH;;V;V?H]L, B is a projection matrix given by

B=1, - CH(CCH)1C, and C is given by

[ VAR ]
viad
J2 12

{.]Tluiz’“'} =DtT

. [1,5}31]H /1) ped
, {12y =D,

with
i1
_ [1.d" 1H
ijy
ij2

and nullspace!¥*1(X) denotes z;. orthonormal vectors in the

nullspace of X, and eigl®?!(X) is the eigenvectors of X corre-
sponding to the a-th smallest to the b-th smallest eigenvalues.
Further, the optimal objective value is given by

1 ZixtCc—p
—. Z A (BAB).
L l=c—-p+1
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where A;(X) is the I-th smallest eigenvalue of matrix X.

A proof of Lemma 1 is given in Appendix ?2.

To ensure our algorithm to converge, we let U; be

updated only when the current optimal objective value
is smaller than that in the last iteration, i.e., AEI,:'([) <
AELL.(t — 1). Otherwise U; remains unchanged as in the last
iteration until updates in future iterations.
Step 3: Optimizing Rx Weights. Similar to optimizing Tx
weight matrices, we have |X®| independent sub-problems
for |%X®| Rx nodes, and each has three sets of constraints to
optimize Rx weight matrix V;. Deriving these constraints
is similar to Step 2. Then the optimization problem for Rx
weight matrix V; is:

i#s(J)

OPT-Rx-j m}i?xz »AIELJ' = Z PiL;; ”UzHﬁijVJ'HZF ’
V;eCi iekKT
st. VIV, = 1\1,
UIHI:IijVj :j 0, i€ Z)}-{,
Ay S, e DR,

where Z)? ={i: dg = Zix, d}} < rij,i € KT, j ¢ ‘KiR} and
DR={i:0<df <znords=riieXT,j¢ KR}

Solving problem OPT-Rx-j is similar to that for problem
OPT-Tx-i and we omit the details to conserve space. To
guarantee convergence, V; is updated only when current
optimal objective value AELJ. (¢) is smaller than AELJ. (t—1) of
last iteration. Otherwise V; remains the same until updates
in future iterations.

Step 2 and Step 3 are iteratively performed until there

is no improvement for W consecutive iterations, i.e., Ar1(z —
w—=1) -4t -w) <e,w=0,1,..., W -1 is met for a given
convergence threshold e.
Step 4: Cancelling Intra-node Interference. ~Within an
intended link, there may exist multiple data streams and
they would also interfere with each other. In this step, we
cancel such intra-node interference to decode the desired
data streams. This can be done by performing a linear
transformation of Tx weight U; by multiplying a matrix F;.
Such a linear transformation can decode different intra-node
data streams while not affecting inter-node IC.

To show how such a linear transformation works, let’s
denote

Fi = [H,-lejl Hijzvjz . ] , ‘].1,].2, ... € KR,Z (S WT.

Then we define F; as
F, = (UAT)™!, ie k™

To perform a linear transformation on Tx weight matrix U;,
we multiply it by matrix F;. We have:
U, « UF? iex™ (21)

It is easy to verify that after such a transformation, we have
UAT; =1,,..
1 i

13

Step 5: Power Allocation. = We apply equal power al-
location for each data stream, subject to the total power
constraints Tr(U;UX) =1, Tr(Vij) =1. We have

be 1l T
ul ——t _viekT, f=1,2,.., 2,
T o f g
1
1 V[.*f] (22)
vj[.*f] e —t _ViekR f=12 .2,
N ‘V[.*f]H
J

A pseudocode of our proposed algorithm to compute
Tx and Rx weights is given in Algorithm 1. A proof of the
algorithm’s convergence is given in Appendix ??.

Although Algorithm 1 minimizes leakage interference
in each iteration and is proven to converge, the objective
value upon this convergence may only be sub-optimal.
Nevertheless, we find that this algorithm is computationally
efficient. The performance of the algorithm is presented in
the following section.

Algorithm 1: Computing Tx and Rx Weights
input :Hij, rij, zij, d}}, d,-Tj, P, Ljj
output :U;, V;
parameter: e, W

1 Initialize: Start with arbitrary weight matrices:
2 U;: N X zp., rank(U;) = z;;
3 Vi NX x z,j,rank(V;) = z.j;

4 Nonlmprovelter = 0 ;

5 while Nonlmprovelter < W, do

6 foreach i € KT do

7 Solve optimization Problem OPT-Tx-i ;

8 if AEL[(t) < AEI’i(t —1) then

9 | U; « solution to Problem OPT-Tx-i ;
10 end

11 end

12 foreach j € X% do

13 Solve optimization Problem OPT-Rx-j ;
14 if AEL]. (1) < AELJ.(t —1) then

15 | V; « solution to Problem OPT-Rx-j ;
16 end
17 end
18 if Arp(r — 1) — Ap1(r) < € then

19 ‘ Nonlmprovelter «<— Nonlmprovelter +1 ;
20 else
21 ‘ Nonlmprovelter =0 ;
22 end
23 end
24 foreach j € KR ie KT do
25 U; « performing linear transformation by (21) ;
26 V;,U; « performing equal power allocation
by (22);

27 end

6.3 Performance

In this section, we examine the effectiveness of Algorithm 1
in terms of cancelling the strong interference. For evaluation,
we first introduce the metric of normalized residual interfer-
ence, which is defined as the ratio of residual interference
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Fig. 13: The average normalized residual interference under
different rank thresholds.
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(i.e., the remaining portion of the strong interference after
applying the weights at the PHY layer for IC) to the inter-
ference power before this IC.

Recall that H;; is the best rank-r approximate of channel
H;; (defined in Section 6.1). After applying the Tx and Rx
weights found by Algorithm 1, the residual interference
power perceived at Rx node j is Z?:(j) P;L;; ||ULHI:I[~]~V]~| i,
which we hope to be close to 0 (if our Algorithm 1 is
effective). The interference power before IC can be expressed
as Zi;g) NL:TLi i ||H, JH? Then the normalized residual inter-
ference at Rx node j, denoted as & i, is

St il U V|
j= o - )
Sioxt wrLis [l

Denote d,ve as the average normalized residual interference
over all Rx nodes. Then J,ve is given by

> 6.

1
S = ——
ave W(Ri P

We will use dave as the primary performance metric to show
the effectiveness of Algorithm 1.

We consider the same network setting as in Section 5. For
the parameters of Algorithm 1, we set e =107 and W = 5.
Fig. 13 shows that, by applying Algorithm 1, the average
normalized residual interference is close to zero (less than
0.025) under all different network settings (o = 0.2,0.4 and
0.6) and different effective rank thresholds. This demon-
strates that the Tx and RX weights assigned by Algorithm 1
can successfully suppress the strong interference close to
zero in all cases. That is, for practical purpose, Algorithm 1
can guarantee feasibility at the PHY layer for a given DoF
allocation by the DoF IC model in Section 4.

7 CONCLUSIONS

In this paper, we developed a novel DoF IC strategy that
exploited interference signal strengths among different di-
rections in the eigenspace. By decomposing an interference

14

channel in its eigenspace and introducing an effective rank
threshold to differentiate strong and weak interference, we
showed that precious DoFs can be conserved if we only
use DoFs to cancel those strong interference signals in
the eigenspace. We investigated the trade-off between net-
work throughput and effective rank threshold and showed
that network throughput under the optimal effective rank
threshold is significantly higher than that under existing
DoF IC models. To ensure the new DoF IC model is feasible
at the PHY layer, we proposed an algorithm to find the Tx
and Rx weights such that the strong interferences beyond
the effective rank threshold can be suppressed close to zero.

ACKNOWLEDGMENTS

This research was supported in part by NSF under grant
CNS-1617634, Virginia Commonwealth Cyber Initiative
(CCI), and Virginia Tech Institute for Critical Technology
and Applied Science (ICTAS).

REFERENCES

[1] Y. Chen,S. Li, C. Li, Y.T. Hou and B. Jalaian, “To cancel or not to
cancel: Exploiting interference signal strength in the eigenspace
for efficient MIMO DoF utilization,” in Proc. of IEEE INFOCOM,
pp- 1954-1962, Paris, France, April 29-May 2, 2019.

[2] D.M. Blough, G. Resta, P. Santi, R. Srinivasan and L. M. Cortés-
Pena, “Optimal one-shot scheduling for MIMO networks,” in
Proc. of IEEE SECON, pp. 404-412, Salt Lake City, UT, USA, June
2011.

[3] Y. Shi, J. Liu, C. Jiang, C. Gao and Y.T. Hou, “A DoF-based link
layer model for multi-hop MIMO networks,” IEEE Transactions
on Mobile Computing, vol. 13, no. 7, pp. 1395-1408, July 2014.

[4] B. Hamdaoui and K.G. Shin, “Characterization and analysis of
multi-hop wireless MIMO network throughput,” in Proc. of ACM
MobiHoc, pp. 120-129, Montreal, Quebec, Canada, Sept. 2007.

[5] R. Bhatia and L. Li, “Throughput optimization of wireless
mesh networks with MIMO links,” in Proc. of IEEE INFOCOM,
pp- 2326-2330, Barcelona, Spain, May 2007.

[6] H.Yu, O. Bejarano and L. Zhong, “Combating inter-cell interfer-
ence in 802.11ac-based multi-user MIMO networks,” in Proc. of
ACM MobiCom, pp. 141-152, Maui, Hawaii, USA, Sept. 2014.

[7] D.M.Blough, P. Santi and R. Srinivasan, “On the feasibility of uni-
lateral interference cancellation in MIMO networks,” IEEE/ACM
Transactions on Networking, vol. 22, no. 6, pp. 1831-1844, Dec.
2014.

[8] K. Sundaresan, R. Sivakumar, M.A. Ingram and C. Tae-Young,
“Medium access control in ad hoc networks with MIMO links:
Optimization considerations and algorithms,” IEEE Transactions
on Mobile Computing, vol. 3, no. 4, pp. 350-365, Oct. 2004.

[9] H. Zeng, Y. Shi, Y.T. Hou, R. Zhu and W. Lou, “A novel MIMO

DoF model for multi-hop networks,” IEEE Network, vol. 28, no. 5,

pp- 81-85, Sept. 2014.

X. Xie, X. Zhang and E. Chai, “Cross-cell DoF distribution:

combating channel hardening effect in multi-cell MU-MIMO

networks,” in Proc. of ACM MobiHoc, pp. 337-346 Hangzhou,

China, June 2015.

S. Kumar, D. Cifuentes, S. Gollakota and D. Katabi, “Bringing

cross-layer MIMO to today’s wireless LANs,” in Proc. of ACM

SIGCOMM. Hong Kong, China, vol. 43, no. 4, pp. 387-398, Aug.

2013.

]J.S. Park, A. Nandan, M. Gerla and L. Heechoon, “SPACE-MAC:

Enabling spatial reuse using MIMO channel-aware MAC,” in

Proc. of IEEE ICC, pp. 3642-3646, Seoul, South Korea, May 2005.

J.C. Mundarath, P. Ramanathan and B.D. Van Veen, “Exploiting

spatial multiplexing and reuse in multi-antenna wireless ad hoc

networks,” Elsevier Ad Hoc Networks, vol. 7, no. 2, pp. 281-293,

March 2009.

RH. Etkin, N.C. David and H. Wang, “Gaussian interference

channel capacity to within one bit,” IEEE Transactions on Infor-

mation Theory, vol. 54, no. 12, pp. 5534-5562, Dec. 2008.

[10]

[11]

[12]

(13]

[14]

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information,
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:03:24 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3126449, IEEE

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information,
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:03:24 UTC from IEEE Xplore. Restrictions apply.

Transactions on Mobile Computing

F. Negro, S.P. Shenoy, I. Ghauri and D.T. Slock, “On the MIMO
interference channel”, in Proc. of IEEE Information Theory and
Applications Workshop, pp. 1-9, San Diego, CA, USA, Jan. 2010.
A. Host-Madsen and A. Nosratinia, “The multiplexing gain of
networks,” in Proc. of IEEE ISIT, pp. 2065-2069, Adelaide, Aus-
tralia, Sept. 2005.

Q.H. Spencer, A.L. Swindlehurst and M. Haardt, “Zero-forcing
methods for downlink spatial multiplexing in multiuser MIMO
channels,” IEEE Transactions on Signal Processing, vol. 52, no. 2,
pp. 461471, Feb. 2004.

L. Zheng and D.N.C. Tse, “Diversity and multiplexing: A funda-
mental tradeoff in multiple-antenna channels,” IEEE Transactions
on Information Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.

H. Xie, F. Gao and S. Jin, “An overview of low-rank channel
estimation for massive MIMO systems,” IEEE Access, vol. 4,
pp- 7313-7321, Nov. 2016.

M. Cicerone, O. Simeone and U. Spagnolini, “Channel estimation
for MIMO-OFDM systems by modal analysis/filtering,” IEEE
Transactions on Communications, vol. 54, no. 11, pp. 2062-2074,
Nov. 2006.

E. Fishler and H. V. Poor, “Estimation of the number of sources
in unbalanced arrays via information theoretic criteria,” IEEE
Transactions on Signal Processing, vol. 53, no. 9, pp. 3543-3553,
Sept. 2005.

E. Fishler, M. Grosmann and H. Messer, “Detection of signals
by information theoretic criteria: general asymptotic performance
analysis,” IEEE Transactions on Signal Processing, vol. 50, no. 5,
pp- 1027-1036, May 2002.

K. Gomadam, V.R. Cadambe and S.A. Jafar, “Approaching the
capacity of wireless networks through distributed interference
alignment,” in Proc. of IEEE GLOBECOM, pp. 1-6 New Orleans,
LO, USA, Nov 30-Dec 4, 2008.

S.W. Peters and R.W. Heath, “Cooperative algorithms for MIMO
interference channels,” IEEE Transactions on Vehicular Technology,
vol. 60, no. 1, pp. 206-218, Oct. 2011.

S.A. Jafar and M.]. Fakhereddin, “Degrees of freedom for the
MIMO interference channel,”, IEEE Transactions on Information
Theory, vol. 53, no. 7, pp. 26372642, June 2007.

M. Razaviyayn, G. Lyubeznik and Z.Q. Luo, “On the degrees of
freedom achievable through interference alignment in a MIMO
interference channel,” IEEE Transactions on Signal Processing, vol.
60 no. 2, pp.812-821, Feb. 2012.

S.R. Krishnamurthy, A. Ramakrishnan and S.A. Jafar, “Degrees
of freedom of rank-deficient MIMO interference channels,” IEEE
Transactions on Information Theory, vol. 61, no. 1, pp. 341-365, Jan.
2015.

Y. Zeng, X. Xu, Y.L. Guan, E. Gunawan and C. Wang, “Degrees
of freedom of the three-user rank-deficient MIMO interference
channel,” IEEE Transactions on Wireless Communications, vol. 13,
no. 8, pp. 41794192, Aug. 2014.

L. Yang and W. Zhang, “On degrees of freedom region of three-
user MIMO interference channels,” IEEE Transactions on Signal
Processing, vol. 63, no. 3, pp. 590-603, Feb. 2015.

H. Sun, SR. Krishnamurthy and S.A. Jafar, “Rank matching
for multihop multiflow,” IEEE Transactions on Information Theory,
vol. 61, no. 9, pp. 4751-4764, June 2015.

Ettus Research, “Software-defined radio device: USRP N210,”
available at www.ettus.com/product/details/UN210-KIT

Ettus Research, “OctoClock-G CDA-2990,” available at
www.ettus.com/product/details /OctoClock-G

E. Blossom, “GNU Radio: Tools for Exploring the Radio Fre-
quency Spectrum,” Linux Journal, vol. 2004, no. 122, 2004.

J.P. Kermoal, L. Schumacher, K.I. Pedersen, PE. Mogensen and
F. Frederiksen, “A stochastic MIMO radio channel model with
experimental validation”, IEEE Journal on Selected Areas in Com-
munications, vol. 20, no. 6, pp. 1211-1226, Aug. 2002.

K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and
M. Beach, “Modeling of wide-band MIMO radio channels based
on NLoS indoor measurements”, IEEE Transactions on Vehicular
Technology, vol. 53, no. 3, pp. 655-665, May 2004.

R.K. Mallik, “The exponential correlation matrix: Eigen-analysis
and applications,” IEEE Transactions on Wireless Communications,
vol. 17, no. 7, pp. 4690-4705, July 2018.

J. Choi and D.J. Love, “Bounds on eigenvalues of a spatial
correlation matrix”, IEEE Communications Letters, vol. 18 no. 8,
pp- 1391-1394, Aug. 2014.

D. Gesbert, H. Bolcskei, D.A. Gore, and A.J. Paulraj, “Outdoor

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

15

MIMO wireless channels: Models and performance prediction,”
IEEE Transactions on Communications, vol. 50, no. 12, pp. 1926—
1934, Dec. 2002.

H. Shin and J.H. Lee, “Capacity of multiple-antenna fading chan-
nels: Spatial fading correlation, double scattering, and keyhole”.
IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2636—
2647, Oct. 2003.

C. Eckart, and G. Young, “The approximation of one matrix by
another of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211-218,
1936.

3GPP TR 36.842, “Study on Small Cell enhancements for E-UTRA
and E-UTRAN; Higher layer aspects." Available: https://portal
.3gpp.org/desktopmodules/Specifications/SpecificationDetails
.aspx?specificationld=2543

IEEE 802.11ac, “IEEE standard for information technology-
telecommunications and information exchange between systems-
Local and metropolitan area networks-specific requirements-Part
11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications-amendment 4: enhancements for very
high throughput for operation in bands below 6 GHz,” IEEE
Standards 802.11ac, Dec. 2013.

X. Xie, X. Zhang, and K. Sundaresan, “Adaptive feedback com-
pression for MIMO networks,” in Proc. of ACM MobiCom, pp. 477—
488, Miami, FL, Sep. 2013.

X. Zhang, K. Sundaresan, M.A. Khojastepour, S. Rangarajan,
and K.G. Shin, “NEMOx: scalable network MIMO for wireless
networks,” in Proc. of ACM MobiCom, pp. 453-464, Miami, FL,
Sep. 2013.

O. Bejarano, E. Magistretti and O. Gurewitz, “Mute: sounding
inhibition for MU-MIMO WLANS,” in Proc. of IEEE SECON,
pp- 135-143, Singapore, June 30-July 3, 2014.

X. Xie and X. Zhang, “Scalable user selection for MU-MIMO
networks,” in Proc. of IEEE INFOCOM, pp. 808-816, Toronto,
Canada, April 27-May 2, 2014.

C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang and L.
Zhong, “Argos: practical many-antenna base stations,” in Proc. of
ACM MobiCom, pp. 53-64, Istanbul, Turkey, Aug. 2012.

G.S. Smith, “A direct derivation of a single-antenna reciprocity
relation for the time domain,” IEEE Transactions on Antennas and
Propagation, vol. 52, no. 6, pp. 1568-1577, June 2004.

Y. Chen, Y. Huang, Y. Shi, Y.T. Hou, W. Lou and S. Kompella, “On
DoF-based interference cancellation under general channel rank
conditions,” IEEE/ACM Transactions on Networking, vol. 28, no. 3,
pp- 1002-1016, June 2020.

EP. Kelly, A K. Maulloo and D.K.H. Tan, “Rate control for com-
munication networks: Shadow prices, proportional fairness and
stability,” The Journal of the Operational Research Society, vol. 49,
no. 3, pp. 237-252, April 1998.

A. Ben-Tal and A. Nemirovski, Lectures on modern convex opti-
mization: analysis, algorithms, and engineering applications, Chapter
3, STAM, 2001. ISBN: 9780898714913.

Gurobi Optimization, Inc. “Gurobi optimizer reference manual,”
2018. Available: http:/ /www.gurobi.com

B. Hochwald and S. Vishwanath, “Space-time multiple access:
Linear growth in the sum rate”, in Proc. 40th Annual Allerton Conf.
Communications, Control and Computing, Monticello, IL, USA, Oct.
2002.

Q. Wang and Y. Jing, “New rank detection methods for reduced-
rank MIMO systems,” EURASIP Journal on Wireless Communica-
tions and Networking, vol. 2015, no. 1, pp. 230, Oct. 2015.

M. Nicoli and U. Spagnolini, “Reduced-rank channel estimation
for time-slotted mobile communication systems,” IEEE Transac-
tions on Signal Processing, vol. 53, no. 3, pp. 926-944, March 2005.

A.G. Burr, “Capacity bounds and estimates for the finite scat-
terers MIMO wireless channel,” IEEE Journal on Selected Areas in
Communications, vol. 21, no. 5, pp. 812-818, June 2003.

CR. Johnson and J. A. Link, “Solution theory for complete
bilinear systems of equations,” Numerical Linear Algebra with
Applications, vol. 16, no. 11-12, pp. 929-934, Nov./Dec. 2009.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3126449, IEEE

Transactions on Mobile Computing

Yongce Chen (M’21) is currently a Senior Sys-

tem Software Engineer at NVIDIA Corporation,

Santa Clara, CA, USA. He received his Ph.D.

degree in electrical engineering from Virginia

Tech, Blacksburg, VA, USA, in 2021, and his B.S.

and M.S. degrees in electrical engineering from

Beijing University of Posts and Telecommunica-

tions (BUPT), Beijing, China, in 2013 and 20186,

respectively. During his Ph.D. study at Virginia

) Tech, he was awarded a VT Wireless Fellowship

in 2016 and a Pratt Fellowship in 2021, respec-

tively. He received the Best Paper Award in IEEE INFOCOM 2021. His

current research interests include optimization, MIMO techniques and
real-time implementation for wireless networks.

Shaoran Li (S'17) received his B.S. degree from
Southeast University, Nanjing, China, in 2014
and M.S. degree from Beijing University of Posts
and Telecommunications (BUPT), Beijing, China
in 2017. Currently, he is a Ph.D. student at
Virginia Tech supervised by Professor Thomas
Hou. His research interests are algorithm design
and implementation for wireless networks.

Chengzhang Li (S’17) is a Ph.D. student in the
Bradley Department of Electrical and Computer
Engineering at Virginia Tech, Blacksburg, VA,
USA. He received his B.S. degree in Electronics
Engineering from Tsinghua University, Beijing,
China, in 2017. His current research interests
are modeling, analysis and algorithm design for
wireless networks, with a focus on Age of Infor-
mation (Aol) and latency research.

Brian Jalaian (M’15) is a research scientist and
technical research lead at Army Research Lab-
oratory and a adjunct research assistant profes-
sor at Virginia Tech. He has obtained his Ph.D.
from the Bradley Department of Electrical and
Computer Engineering in 2016 at Virginia Tech.
He has obtained his MS in Electrical Engineer-
ing (Network and Communication Systems) and
MS in Industrial System Engineering (Operation
Research) in 2013 and 2014 at Virginia Tech,
respectively. His research interests are optimiza-
tion, machine learning, and network science.

Huacheng Zeng (SM’20) is an Assistant Profes-
sor in the Department of Computer Science and
Engineering at Michigan State University (MSU).
Prior to joining MSU, he was an Assistant Pro-
fessor of Electrical and Computer Engineering
at University of Louisville and a Senior System
Engineer at Marvell Semiconductor. He holds a
Ph.D. degree in Computer Engineering from Vir-
ginia Polytechnic Institute and State University.
He was a recipient of NSF CAREER Award. His
research interest is broadly in computer network-
ing and sensing systems.

16

" Y. Thomas Hou (F’'14) is Bradley Distinguished
Professor of Electrical and Computer Engineer-
ing at Virginia Tech, Blacksburg, VA, USA, which
he joined in 2002. He received his Ph.D. degree
from NYU Tandon School of Engineering (for-
merly Polytechnic Univ.) in 1998. During 1997
to 2002, he was a Member of Research Staff
at Fujitsu Laboratories of America, Sunnyvale,
CA, USA. Prof. Hou’s current research focuses
on developing innovative solutions to complex
science and engineering problems arising from
wireless and mobile networks. He is also interested in wireless security.
He has published over 300 papers in IEEE/ACM journals and confer-
ences. His papers were recognized by nine best paper awards from
IEEE and ACM. He holds six U.S. patents. He authored/co-authored
two graduate textbooks: Applied Optimization Methods for Wireless
Networks (Cambridge University Press, 2014) and Cognitive Radio
Communications and Networks: Principles and Practices (Academic
Press/Elsevier, 2009). Prof. Hou was named an IEEE Fellow for con-
tributions to modeling and optimization of wireless networks. He was/is
on the editorial boards of a number of IEEE and ACM transactions and
journals. He served as Steering Committee Chair of IEEE INFOCOM
conference and was a member of the IEEE Communications Society
Board of Governors. He was also a Distinguished Lecturer of the IEEE
Communications Society.

Wenjing Lou (F'15) is the W. C. English En-
dowed Professor of Computer Science at Vir-
ginia Tech and a Fellow of the IEEE. She holds
a Ph.D. in Electrical and Computer Engineering
from the University of Florida. Her research in-
terests cover many topics in the cybersecurity
field, with her current research interest focusing
on wireless networks, privacy protection in ma-
chine learning systems, and security and privacy
problems in the Internet of Things (loT) systems.
Prof. Lou is a highly cited researcher by the Web
of Science Group. She received the Virginia Tech Alumni Award for
Research Excellence in 2018, which is the highest university level faculty
research award. She received the INFOCOM Test-of-Time paper award
in 2020. She is the TPC chair for IEEE INFOCOM 2019 and ACM WiSec
2020. She was the Steering Committee Chair for IEEE CNS conference
from 2013 to 2020. She is currently a steering committee member of
IEEE INFOCOM and IEEE Transactions on Mobile Computing. She
served as a program director at US National Science Foundation (NSF)
from 2014 to 2017.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information,
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:03:24 UTC from IEEE Xplore. Restrictions apply.



