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ABSTRACT
Mobile Edge Computing (MEC) has emerged to be an integral com-

ponent of 5G infrastructure due to its potential to speed up task

processing and reduce energy consumption for mobile devices.

However, a major technical challenge in making offloading deci-

sions is that the number of required processing cycles of a task is

usually unknown in advance. Due to this processing uncertainty, it

is difficult to make offloading decisions while providing any guar-

antee on task deadlines. To address this challenge, we propose

EPD—Energy-minimized solution with Probabilistic Deadline guar-

antee to task offloading problem. The mathematical foundation of

EPD is Exact Conic Reformulation (ECR), which is a powerful tool

that reformulates a probabilistic constraint for task deadline into

a deterministic one. In the absence of distribution knowledge of

processing cycles, we use the estimated mean and variance of pro-

cessing cycles and exploit ECR to the fullest extent in the design of

EPD. Simulation results show that EPD successfully guarantees the

probabilistic deadlines while minimizing the energy consumption

of mobile users, and can achieve significant improvement in energy

saving when compared to a state-of-the-art approach.

CCS CONCEPTS
•Networks→Network resources allocation;Mobile networks;
Network performance analysis.

KEYWORDS
Mobile Edge Computing, Processing Uncertainty, Offloading, Sched-

uling

1 INTRODUCTION
With the proliferation of energy-constrained user equipments (UEs)

and computationally intensive applications, Mobile Edge Comput-

ing (MEC) has been proposed in recent years [3, 14]. Under MEC,

computation-intensive tasks generated by UEs may be offloaded

to the edge Base Station (BS) for processing in addition to local

processing at the UEs. There are two benefits in offloading: (i) the

UEs may conserve precious energy; (ii) the processors at the BS

are expected to be much more powerful than that at the UE and

thus may complete the task faster. Motivated by these benefits,
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infrastructure standard bodies such as 3GPP have included MEC in

their 5G network standardization [2].

An important objective in offloading tasks from the UEs to the

BS is to guarantee their deadlines. In other words, the outcome

of these tasks must meet certain deadlines so that they can be

used in time by the underlying applications. Most of the existing

works that addressed task deadlines assume the required number

of processing cycles of a task is known a priori [8, 22–24]. However,
such an assumption is overly idealistic and does not reflect what

happens with many real-world applications, where the required

number of processing cycles of a task is independent of the input

file size and is unknown until the task is completed [13, 28]. For

example, in a facial recognition application, the processing time of

a task is unpredictable and unknown in advance. Therefore, most

of the existing offloading algorithms proposed in the literature are

not applicable as they are unable to address uncertainty in task

processing.

Indeed, the uncertain nature of a task’s processing cycles brings

in considerable challenges to making offloading decisions. The

distribution of a task’s processing cycles is typically unknown in

advance. At best, one may derive some partial (and very limited)

knowledge, such as mean, variance, or worst-case values through

online measurement. There has been very limited work that ad-

dresses processing cycle uncertainty inMEC [10, 13, 21] andmost of

them do not offer theoretical guarantees. The state-of-the-art work

that offers theoretical guarantees is the one by Eshraghi and Liang

[10], which is based on worst-case analysis. It is well known that

results following worst-case analysis tend to be very conservative.

In this paper, we address the uncertainty problem in task pro-

cessing through probabilistic deadline guarantees (a.k.a chance-

constrained programming (CCP) [25]). Instead of providing a hard

guarantee of a task’s deadline, we allow some occasional violation

of a task’s deadline—as long as such violation probability is kept

below a given threshold (risk level). This approach is plausible for

many mobile applications as occasional deadline violations can

be tolerated by the highly adaptive nature of human perceptual

systems [26]. In our research community, CCP has been in underlay

coexistence [17, 19], OFDM scheduling [18], and video streaming

[4], etc. To the best of our knowledge, there is no work that employs

CCP to address processing uncertainty in MEC.

The main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first paper that

addresses the uncertainty of task processing cycles in MEC

through CCP. In contrast to the state-of-the-art approach

where worst-case bounds are used to handle uncertainty, we

exploit the estimated mean and variance of task processing

cycles and offer probabilistic deadline guarantees.

• Since the constraints for probabilistic deadlines in our prob-

lem are intractable in the absence of distribution functions,

we employ a powerful tool called Exact Conic Reformulation
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Figure 1: A reference network for MEC

(ECR) to reformulate the chance constraints (involving ran-

domness) into deterministic constraints. In the case that only

means and variances are known, ECR is “exact" in the sense

that no relaxation errors are introduced in the reformulation.

• To mitigate uncertainty in a task’s processing cycles via

ECR, we have successfully developed an online solution

called Energy-minimized solution with Probabilistic Dead-

line guarantee (EPD) that minimizes energy consumption

at UEs with probabilistic deadline guarantees. When the

system is in normal operation (not overloaded), EPD makes

offloading decisions to minimize energy consumption while

guaranteeing probabilistic deadlines of all tasks. When the

system is overloaded (i.e., in an infeasible region where not

all tasks’ probabilistic deadlines can be met), EPD maximizes

the number of tasks that can meet their probabilistic dead-

lines while attempting to minimize energy if possible.

• Through extensive simulations, we find that EPD success-

fully guarantees the probabilistic deadlines of tasks using

only the estimated mean and variance of processing cycles.

As a comparison, EPD offers a significant improvement in

energy saving when compared to the state-of-the-art worst-

case approach to address uncertainty in processing cycles.

2 SYSTEM DESCRIPTION
Consider the reference network for MEC shown in Fig. 1, where

there is a set of UEs and an edge BS. The UEs are connected to

the edge BS via wireless channels. The edge BS is equipped (or co-

located) with a number of high-performance processors. Through-

out this paper, we use the term “BS” to refer to joint edge BS and

these co-located high-performance processors.

Consider the scenario where a task is generated by a UE and

the output (from processing this task) is to be consumed by the

UE with a deadline. However, the processing of a task can be done

either locally or remotely. In this work, we consider binary offload-

ing meaning that a task must be fully processed either locally or

remotely [23]. Clearly, there are some trade-offs in time and energy

between processing locally at the UE and processing at the BS:

• Processing task locally at its UE In this case, the total

time consumption only consists of task processing time at

the UE. Further, significant energy may need to be consumed

by the UE’s battery, depending on the required processing

cycles and type of processors.

• Offloading task to the BS In this case, the total time

consumption consists of data transfer time through wireless

channel, task queuing time at the BS, and task processing

time at the BS. In terms of energy consumption, the UE will

consume energy for uplink and downlink data transfer but

will save processing energy due to offloading.

In either case, one would hope that the output after processing a

task can come back to the UE’s application in time for its consump-

tion. As discussed in Section 1, the required number of processing

cycles of a task (and thus processing time) is typically unknown

in advance. Due to such an uncertainty, it should be modeled as a

random variable (RV). For this RV, in most cases, one does not have

its distribution function. Instead, one may estimate its mean and

variance through online measurements, which is relatively easy to

do (comparing to obtaining its distribution function).

To cope with the uncertainty in a task’s processing cycles, we

employ a probabilistic deadline guarantee for each task instead of

a deterministic one. This means that we will allow some occasional

violation of the deadline, as long as such a violation probability

is below a tolerable threshold. Note that when the violation prob-

ability is 0, we will have a hard deadline, which is a special case

of our probabilistic deadline. In this sense, a probabilistic deadline

guarantee is more general and better suited for practical purposes.

In the rest of this section, we will briefly describe the behaviors

of the UEs and the BS, and then formally state our problem.

UE At the UE side, each UE will generate tasks from time to time.

If there is no other pending task request (before its decision is made)

at the BS, it shall send its task request to the BS immediately and

wait for the decision. Otherwise the task will be allocated to local

processing. In other words, each UE can only have one pending

task request at the BS but can have multiple offloaded tasks (can

be in transmission, queuing or processing) at the BS. For each task

request sent to the BS, the UE will receive its decision from the

BS. The delay in this decision process will be counted toward total

time consumption. If the offloading decision is “local", the UE will

process the task locally. Otherwise, it will transmit the task data to

the BS for processing and receive the results later from the BS.

BS At the BS side, the BS only makes offloading decisions period-

ically. This period (denoted as T ) can be set by the system operator

and can be as low as one Transmission Time Interval (TTI) (in 5G

transmission terminology). When the BS makes offloading deci-

sions for the task requests for current T , it considers the current
state at the BS, the probabilistic deadline guarantees of tasks, and

the objective function. Therefore, in addition to deciding which

tasks are to be offloaded, the BS needs to tentatively schedule how

the newly offloaded tasks are to be processed in the BS processors.

Then the BS sends the decisions to the UEs and exchanges task data

with the UEs that have offloading tasks. Note that the tentative task

schedule is subject to change during run-time due to processing un-

certainty. Such a schedule change must guarantee the probabilistic

deadlines of all offloaded tasks.

As for the processors at the BS, we assume they have the same

processing speed. We further assume that each task can only be

assigned to one processor [7]. There is a shared pool for queued

tasks (whose processing has not yet started) at the BS and a queued

task can be scheduled to any processor. Once a task starts its pro-

cessing in a particular processor, it will be processed with the full

capacity of the processor without interruption or migration until

it finishes (success) or the processing time reaches its maximum
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cut-off time (forcibly stopped). We note that without cut-off times, a

task can run infinitely since we donâĂŹt assume any upper bound

on a taskâĂŹs number of processing cycles. Clearly, such cut-off

times should be optimized by the BS.

Problem Statement and Technical Challenges In this paper,

we are interested in minimizing energy consumption of the UEs

while offering probabilistic deadline guarantees for tasks. Specifi-

cally, we aim to design an online algorithm that (i) decides what

subset of task requests should be offloaded to the BS at the begin-

ning of each time interval T , and (ii) schedules how the offloaded

tasks are to be processed, i.e., in which processor and in what order.

There are several technical challenges in this problem. First, it

is mathematically challenging to offer a probabilistic guarantee of

each task when we only have the knowledge of mean and variance

(with no knowledge of the distribution ) of a task’s required pro-

cessing cycles. For the special case when the number of processing

cycles of a task is given (deterministic), it has been shown in [12, 16]

that the corresponding schedulability problem (non-preemption

scheduling on multiprocessor) is NP-hard. Since this deterministic

schedulability problem is a special case of our problem (involving

RVs with unknown distributions), our problem is also NP-hard.

Second, due to uncertainty in the number of required processing

cycles, the processing schedule of all the tasks on each processor (at

the BS) is only tentative at best—it is subject to further re-scheduling

(i.e., change of service order, move to a different processor), depend-

ing on the actual number of processing cycles used by a task on

the processor. Such “knowledge-only-till-the-end" uncertainty in

task processing time brings additional dynamics and challenges in

the design of an online algorithm.

3 MATHEMATICAL MODELING AND
ANALYSIS

Since the offloading decision is made at the beginning of an interval,

we will focus our attention on such a time instance (say τ ). Denote
M as the number of processors at the BS. Denote S as the set of

tasks that were offloaded to the BS from the previous interval(s)

but still have not been finished (i.e., in transmission, queuing, or

processing). A task in S could be in the process of uplink transfer

to the BS, waiting at the BS’s processor queue, being processed,

or in the process of downlink transfer to its UE. For any task in

S, its offloading decision (made in previous intervals) cannot be

changed. This is important in practice as one would not expect

the BS to go back and forth to change its offloading decisions and

confuse the UEs. Mathematically, S represents the current state of

unfinished tasks in the system at time τ whose offloading decisions

were already made in the past.

Denote N as the set of N new task requests received from the

UEs in the previous interval. Clearly, N and S are disjoint. Our

goal is to select a subset of tasks from N for offloading to the BS

to minimize energy consumption while meeting the probabilistic

deadlines of all tasks.

3.1 Local Processing
If task i is to be processed locally (i.e., no offloading), then the

total amount of time consumption (denoted as tUEi ) consists of two

parts: (i) the waiting time from the generation time of task i , to the

reception of a decision (denoted as t deci ), and (ii) the local processing

time.

Clearly, t deci can be easily calculated. At time τ , t deci has already

passed since the generation time of task i , and thus it should be

subtracted from task i’s deadline. As for the local processing time

of task i , it depends on the required processing cycles of task i
(denoted asCi ) and the processing speed (in cycles/sec) of the UE’s

processor (denoted as F
U(i)
, where U(i) denotes the UE that generated

task i). We have

tUEi = t deci +
Ci
F
U(i)

. (1)

Note thatCi is a RV with unknown distribution at time τ . The exact
value of Ci is only known upon the completion of task i . But as

discussed in Section 2, we assume its mean (denoted as Ci ) and
variance (denoted as Vi ) can be estimated.

As for energy consumption, denote eUEi as the energy consumed

atU (i) to process task i . Then following the most common energy

consumption model (see e.g., [15, 30]), eUEi can be modelled by
1

eUEi = α
U(i)

·Ci · F
2

U(i)
, (2)

where α
U(i)

is a system parameter depending on UE U (i). Note that
eUEi is proportional to Ci and quadratic to F

U(i)
.

3.2 Offloading to BS
If task i is to be offloaded to the BS for processing, then the total

amount of time consumption (denoted as tBSi ) consists of five parts:
(i) decision time (denoted as t deci ), which is the same with that in

(1), (ii) uplink transfer time (denoted as t upi ), (iii) waiting time of

task i at the BS before its processing (denoted as wproc

i ), (iv) task

processing time at the BS (denoted as t proci ), (v) downlink transfer

time for the outcome of task i (denoted as t downi ). We have

tBSi = t deci + t
up

i + (w
proc

i + t
proc

i ) + t downi . (3)

t upi and t downi are the uplink and downlink transfer times for task

i , respectively from U (i) to the BS and vice versa, We assume both

t upi and t downi are given (or their upper bounds can be estimated in

advance) in our problem. In the following paragraphs, we discuss

wproc

i and t proci , which are directly related to Ci ’s and are the main

focus in our modeling and analysis.

3.2.1 wproc

i . At decision time τ , we need to estimate the waiting

time (wproc

i ) for task i if it is to be offloaded to the BS. Denotem as

the processor at the BS to which task i will be offloaded at time

τ . To ensure that the processing time of a task is under control,

we introduce a cut-off time for each task at time τ . Denote Rτi as

the cut-off time of task i at time τ . Starting from time τ , if task i’s
processing is not completed by time τ + Rτi , task i will be forcibly
terminated. The setting of cut-off times is critical to provide prob-

abilistic deadline guarantees and is part of our design of EPD. In

Section 4, we will show how to construct Rτi for task i if it is to be

offloaded to the BS. With the cut-off times, we can establish two

upper bounds forwproc

i based on two different reference tasks.

An Upper Bound based on Preceding Task Denote task k
as the preceding task of task i with a cut-off time Rτk . This means

task k is scheduled immediately before task i on processorm. If

1
A more complex energy model may be employed as it does not affect the proposed

solution procedure.
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Figure 2: An upper bound ofwproc
i based on HOL task

task i is received before Rτk , i.e., t
up

i < Rτk ,w
proc

i is upper bounded by

Rτk − t
up

i . Otherwise, task i can be processed upon reception without

waiting (i.e.,wproc

i = 0). Thus, w.r.t. task k (preceding task), we have

wproc

i ≤ UB1 = max{Rτk − t upi , 0} , (4)

where UB1 denotes the upper bound forw
proc

i based on the preceding

task of task i .
An Upper Bound based on Head-of-line (HOL) Task De-

note task h as the HOL task of task i with a cut-off time Rτh . This

means task k is currently under processing on processor m, as

shown in Fig. 2. The remaining processing time of task h is a RV

whose mean and variance are unknown (since the distribution of

task h’s processing time is unknown), and is smaller than Rτh .
Denote qi as the set of tasks tentatively scheduled on processor

m before task i but excluding task h. Clearly,wproc

i is influenced by

task h and tasks in qi : their uplink transfer times and processing

times. To find an upper bound ofwproc

i , we need to find the task with

the maximum remaining uplink transfer time at time τ among tasks

in qi ∪ {i}. Denote task j∗ as the task with maximum remaining

uplink transfer time at time τ from tasks in qi ∪ {i}, i.e.,

j∗ = arg max

j ∈qi∪{i }
t upj . (5)

When calculatingwproc

i , we consider two cases depending on the

relationship between t upj∗ and R
τ
h , shown in Fig. 2.

Case (i): t upj∗ ≤ Rτh . This means task j∗ (pink in Fig. 2(a)) arrives at the

BS before processorm completes processing task h. Based on the

definition of j∗ in (5), all tasks in qi ∪ {i} should arrive before time

τ + Rτh . Then processorm will first finish the remaining processing

for task h, followed by tasks in qi without any gap. We have

wproc

i ≤ Rτh +
∑
q∈qi

t procq − t upi . (6)

Case (ii): t upj∗ > Rτh . This means task j∗ (pink in Fig. 2(b)) arrives

at the BS after processor m completes processing task h. Again,
processorm will first finish the remaining processing for task h,
followed by tasks in qi . Unlike case (i), there may be some idle

time at processorm following some tasks’ processing if the later

tasks have not arrived. Nevertheless, such a gap cannot be longer

than t upj∗ − Rτh since all tasks must arrive by time τ + t upj∗ (based on

the definition of j∗), i.e., the white gaps among the tasks in qi in
Fig. 2(b). Thus, we have the following upper bound forwproc

i :

wproc

i ≤ t upj∗ +
∑
q∈qi

t procq − t upi . (7)

Combining (6) and (7) from both cases, we have

wproc

i ≤ UB2 = max{Rτh , t
up

j∗ } +
∑
q∈qi

t procq − t upi , (8)

where UB2 is another upper bound ofwproc

i based on the HOL task

of task i .
Since it is unknown which upper bound ((4) or (8)) is tighter

theoretically, we calculate both and set

wproc

i = min{UB1,UB2} . (9)

3.2.2 t proci . The processing time of task i at a BS’s processor (t proci )

depends on the required processing cycles of task i (Ci ) and the

processing speed of the processors at the BS (denoted as F
BS
). So

t proci is given by

t proci = min

{
Ci
F
BS

, Rτi − t upi −wproc

i

}
, (10)

where Rτi is the cut-off time of task i at time τ .
As for the energy consumption of U (i), denote eBSi as the energy

consumption ofU (i) if task i is offloaded to the BS. Denote pup

U(i)
and

pdown

U(i)
as the power consumption ofU (i) during uplink transmission

and downlink reception respectively. In general, pup

U(i)
includes static

circuit power consumption and transmit power ofU (i), while pdown

U(i)

only includes static circuit power consumption. We have

eBSi = p
up

U(i)
· t upi + p

down

U(i)
· t downi . (11)

3.3 Objective
Our overall objective is to minimize energy consumption of the UEs

while guaranteeing each task’s deadlinewith a given probability. For

energy consumption, denote ei as the actual energy consumption

of task i . If task i is offloaded to the BS, then its energy consumption

is ei = eBSi ; otherwise, its energy consumption is ei = eUEi , i.e.,

ei =

{
eBSi if task i is offloaded to BS,

eUEi otherwise.

(12)

Denote t as the elapsed time of the MEC system from time 0.

Over [0, t], the number of decision intervals is ⌊t/T ⌋. Denote Qt

as the set of task requests generated all the UEs over time [0, t] and
Qt = |Qt |. Then our objective is to minimize E, the average energy
consumption per task over [0, t] when t → ∞, i.e.,

E = lim

t→∞

1

Qt

∑
i ∈Qt

ei . (13)

In terms of deadline feasibility, denote Di as the deadline of task

i and ϵ
U(i)

as the deadline violation probability (i.e., exceeding Di )

that U (i) can tolerate. ϵ
U(i)

is also known as the risk level for U (i).
Then we would like to have

P
{
tBSi ≤ Di

}
≥ 1 − ϵ

U(i)
if task i is offloaded to BS, (14a)

P
{
tUEi ≤ Di

}
≥ 1 − ϵ

U(i)
otherwise. (14b)

where P{·} denotes probability. tUEi and tBSi are defined in (1) and (3)

respectively.

Clearly, the motivation of task offloading is either to ensure

deadline feasibility or energy saving, or both
2
. In general, deadline

2
If a task can meet its probabilistic deadline at the UE and costs less energy compared

to offloading, this task request should not be sent to the BS.
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feasibility of each task is more important than energy saving of

its UE. Therefore, a good design should try to guarantee the tasks’

deadlines first and then minimize the energy consumption of the

UEs. However, when the new task request rate becomes excessively

high or the tasks’ deadlines are too strict to be met, the feasibility of

deadlines from some tasks will not be satisfied. This is the overload

scenario and must be addressed in our algorithm design.

4 EPD – AN ENERGY-MINIMIZED SOLUTION
WITH PROBABILISTIC DEADLINE
GUARANTEE

In this section, we present an online solution to address the of-

floading problem discussed in Section 3.3. For ease of reference,

we call our proposed solution “EPD", an abbreviation for Energy-

minimized solution with Probabilistic Deadline guarantee. EPD

consists of two components: (i) a scheduling algorithm executed

periodically at the beginning of every time interval T , and (ii) a

schedule updating algorithm executed upon the completion of a

task within each interval. We present these two components in

Section 4.1 and 4.2, respectively.

4.1 Periodic Scheduling Per Interval
As discussed in 3.3, we need to prioritize deadline feasibility over

energy saving. The main idea of this component is to first separate

N into two disjoint subsets: NUE

and NUE

based on whether a task

can or cannot meet their probabilistic deadlines if processed locally

(i.e., whether or not (14b) can be satisfied). Clearly, NUE ∩ NUE = ∅

andNUE∪NUE = N . For tasks inNUE

, they must be offloaded to the

BS to meet their probabilistic deadlines, and thus we will maximize

the number of offloaded tasks from NUE

for deadline feasibility

before allocating tasks in NUE

. Then for tasks in NUE

, at least local

execution guarantees their probabilistic deadlines, and thus we will

further minimize the energy consumption by offloading tasks in

NUE

. These correspond to the three steps of the periodic scheduling

per interval in EPD, as detailed below.

4.1.1 Finding NUE and NUE. To find NUE

and NUE

, we need to

check whether or not (14b) can be satisfied for all i ∈ N .

Denote di as the remaining portion of task i’s deadline at time τ ,
i.e., di = Di − t deci . Substituting (1) into (14b), we have i ∈ NUE

if

P

{
Ci
F
U(i)

≤ di

}
< 1 − ϵ

U(i)
. (15)

Recall that Ci is a RV with known mean Ci and variance Vi but
unknown distribution. The constraint in (15) is called a chance con-

straint. Due to a lack of distribution knowledge, a key step in CCP is

to reformulate the intractable chance constraint into a deterministic

constraint. There are a number of methods to perform this refor-

mulation (substitution) such as Chebyshev inequalities, Markov

inequalities [11], conditional value-at-risk [27], Bernstein Approxi-

mation [6] and Exact Conic Reformulation (ECR) [17]. Among them,

ECR is the state-of-the-art approach to handle chance constraint

(15), which we summarize as follows.

Theorem 1. Given RVs ξ = [ξ1, ξ2, · · · , ξn ]
T with known mean

ξ =
[
ξ1, ξ2, · · · , ξn

]T
(a n × 1 column vector) and covariance matrix

R = E
{
(ξ − ξ )(ξ − ξ )T

}
(a n × n matrix), a deterministic vector

b = [b1,b2, · · · ,bn ]
T (a n × 1 column vector), the risk level ϵ , and a

constant z, then we have

P
ξ∼(ξ ,R)

{
bT ξ ≤ z

}
≥ 1 − ϵ , (16)

if and only if

bT ξ +

√
1 − ϵ

ϵ

√
bT Rb ≤ z . (17)

In (16), ξ ∼ (ξ ,R) means ξ has mean ξ , covariance R, and un-

known distribution. Under such an assumption, the reformulation

of (16) in Theorem 1 is called “exact" because no relaxation errors

are introduced in this reformulation [17]. In other words, there

exist some distributions of ξ such that the equalities hold and the

threshold violation probability is exactly ϵ . For other distributions
of ξ , the threshold violation probability is smaller than ϵ . Further,
ECR makes no assumption of the RVs in ξ such as boundaries or

independence and thus it can handle more general cases.

Based on Theorem 1, (15) will hold if and only if

1

F
U(i)

·Ci +

√
1 − ϵ

U(i)

ϵ
U(i)

·
1

F
U(i)

·
√
Vi ≤ di , (18)

which is equivalent to

Ci + KU(i)

√
Vi ≤ diFU(i)

, (19)

where we define K
U(i)

as K
U(i)
=

√
1−ϵU(i)
ϵU(i) .

Clearly, each term in (19) is given and there is no RV. It is easy to

determine whether or not (19) holds for task i . Further, (19) implies

that task i can meet its probabilistic deadline after being processed

for Ci + KU(i)

√
Vi cycles at U (i). Then U (i) can choose to whether

continue processing task i or terminate it to save energy, both

guarantee the probabilistic deadline of task i .
Using (19) as the criteria to determine whether or not task i

belongs to NUE

or NUE

, we have

NUE =
{
i ∈ N : Ci + KU(i)

√
Vi ≤ F

U(i)
di
}
,

NUE =
{
i ∈ N : Ci + KU(i)

√
Vi > F

U(i)
di
}
.

(20)

4.1.2 Offloading tasks inNUE. The goal of this step is to maximize

the number of tasks in NUE

to be offloaded to the BS so that their

probabilistic deadlines (as well as those already at the BS) can be

satisfied. This step is the core of EPD’s periodic scheduling. There

are two questions we need to address in this step.

• Q1: First, when choosing a task fromNUE

to offload to the BS,

we need a metric to decide which task we should consider

first, second, and so forth, i.e., we need an order among the

tasks in NUE

for this step.

• Q2: Second, we need to have a rigorous mathematical cri-

terion to determine whether a selected task from NUE

can

be offloaded to the BS while satisfying all probabilistic dead-

lines (its own and those already at the BS). This is the main

challenge of our problem.

In the following paragraphs, we present the solutions for Q1 and

Q2, and then describe how this step works.
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Q1: Ordering Tasks in NUE
For Q1, we introduce a metric νi

for each task i ∈ NUE

, which is motivated by (19) as follows:

νi =
Ci + KU(i)

√
Vi

F
BS
di

(i ∈ NUE) . (21)

Then we will always pick a task i with the smallest νi among the

remaining tasks in NUE

, i.e., i = argminj ∈NUE νj . Note that the

metric νi favors those tasks with small mean Ci , small variance Vi
and large deadline di . This is rather intuitive as tasks with these

attributes are more likely to be offloaded to the BS while meeting

their deadlines, which corresponds to our objective of this step

(maximize the number of offloaded tasks in NUE

). Interestingly, in

the special case when Vi = 0 (i.e., Ci is deterministic), νi is the
“utilization factor” that has been used in real-time scheduling with

deterministic processing times [20].

Q2: Criterion for Offloading a Task For Q2, suppose we have

picked a task i from NUE

, we need to decide which one (if any),

among the M processors at the BS, can accommodate task i . For
simplicity, we will consider the M processors sequentially (i.e.,

fromm = 1 to M based on its index) and examine one at a time

to see if it can accommodate task i . Once we find a processor that

meets our requirement, we will choose this processor for task i
and update S (the set of offloaded tasks at the BS) with S = S ∪

{i}. This sequential fitting of processors is also called first-to-fit in
multiprocessor scheduling and works well in practice [5]. If task i
cannot fit any processor, the BS will declare that task i offloading

is infeasible and send decision “local" to its corresponding UEU (i).
When considering task i w.r.t. a particular processorm, it will be

tentatively placed on processorm based on Earliest Deadline First

(EDF) since EDF is optimal for single processor scheduling. Then

we need to determine whether or not this allocation is feasible such

that all offloaded tasks (including task i) meet their probabilistic

deadline guarantees. That is, task i can be offloaded to processorm
if and only if for any task j ∈ S ∪ {i},

P
{
t upj +w

proc

j + t
proc

j + t
down

j ≤ dj
}
≥ 1 − ϵ

U(j)
. (22)

Clearly, if task j is scheduled on the (M − 1) processors other

thanm, its time consumption is not affected when task i is offloaded

to processorm. Thus, (22) trivially hold for such a task j.
On the other hand, if task j is scheduled on processorm, its time

consumption could be affected and thus we need to check whether

(22) holds or not. Such tasks scheduled on processorm include: (i)

tasks scheduled before task i , which include HOL task h and tasks

in qi , (ii) task i , (iii) tasks scheduled after task i . In the following

paragraphs, we will discuss tasks in the order of (i), (ii), and (iii).

(i) Here, task j is the task scheduled before task i (i.e., HOL task h
and j ∈ qi in either Fig. 2(a) or Fig. 2(b)). Since task j completes its

processing before task i , task j’s waiting time in the system (wproc

j )

will not be affected by task i . Therefore, the previous deadline

guarantee of task j remains unchanged, i.e., (22) still holds.

(ii) Now we consider task i . Based on the analysis in Section 3,

t upi and t downi in (22) are given constants solely depending on task

i . But the calculation ofwproc

i and t proci involves RVs Ci and Cj (j ∈
qi ), which we only have knowledge of their means and variances.

This is the major challenge here and we will again resort to the

reformulation technique ECR in Theorem 1.

Based on (9), we consider two cases for wproc

i , depending on

whether UB1 ≤ UB2 or UB1 > UB2.

Case 1: UB1 ≤ UB2. In this case,wproc

i = UB1. Substituting (4) into

(22), we have

P
{
max{Rτk , t

up

i } + t proci + t downi ≤ di
}
≥ 1 − ϵ

U(i)
, (23)

where task k is the task immediately preceding task i on processor

m. Since t proci ≤
Ci
FBS (from (10)), a sufficient condition for (23) to

hold is

P

{
max{Rτk , t

up

i } +
Ci
F
BS

+ t downi ≤ di

}
≥ 1 − ϵ

U(i)
.

Based on Theorem 1, the above chance constraint (involving RV

Ci ∼ (Ci ,Vi )) can be equivalently reformulated as

max{Rτk , t
up

i } +
Ci
F
BS

+
K

U(i)

√
Vi

F
BS

+ t downi ≤ di . (24)

Thus, if (24) holds, task i can meet its probabilistic deadline (22).

Further, based on (24), we can construct the cut-off time of task

i as follows:

Rτi |wproc

i =UB1
= max{Rτk , t

up

i } +
Ci
F
BS

+
K

U(i)

√
Vi

F
BS

. (25)

The physical meaning of Rτi |wproc

i =UB1

is that it sets a hard cut-off

time for task i’s processing time if task i is to meet its deadline with

a probability at least 1 − ϵ
U(i)
.

Case 2: UB1 > UB2. In this casewproc

i = UB2. Substituting (8) into

(22), we have

P

{
max{Rτh , t

up

j∗ } +
∑
q∈qi

t procq + t proci + t downi ≤ di

}
≥ 1 − ϵ

U(i)
, (26)

where task h is the HOL task on processorm.

Since t procq ≤
Cq
FBS (from (10)) for q ∈ qi and t

proc

i ≤
Ci
FBS , a sufficient

condition for (26) to hold is

P

max{Rτh , t
up

j∗ } +
∑

q∈{qi ,i }

Cq

F
BS

+ t downi ≤ di

 ≥ 1 − ϵ
U(i)
.

Since Ci and Cq ’s are independent RVs, their covariance matrix

(“R” in Theorem 1) is a diagonal matrix with Vq (for q ∈ qi ) and Vi
as the diagonal elements. Based on Theorem 1, the above chance

constraint can be reformulated equivalently as

max{Rτh , t
up

j∗ } +
∑

q∈{qi ,i }

Cq

F
BS

+
K

U(i)

F
BS

·

√ ∑
q∈{qi ,i }

Vq + t
down

i ≤ di .

(27)

Thus, if (27) holds, task j can meet its probabilistic deadline (22).

Similarly, based on (27), we can construct Rτi as follows:

Rτi |wproc

i =UB2
= max{Rτh , t

up

j∗ } +
∑

q∈{qi ,i }

Cq

F
BS

+
K

U(i)

F
BS

·

√ ∑
q∈{qi ,i }

Vq .

(28)

Combining the two conditional cut-off times in (25) and (28), the

cut-off time of task i is

Rτi = min

{
Rτi |wproc

i =UB1
,Rτi |wproc

i =UB2

}
. (29)
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In summary, task i can meet its probabilistic deadline if

Rτi + t
down

i ≤ di . (30)

(iii) If task j is scheduled after task i on processorm (green aera

in either Fig. 2(a) or Fig. 2(b)), the whole decision process is the

same as in (ii) for task i except a notation change for task j.
With the above solutions to Q1 and Q2, this step works as follows.

We first order the tasks in NUE

based on (21) in ascending order.

Then we iteratively pick a task i from NUE

and update NUE

with

NUE\{i}. For each picked task i , we perform the procedure in Q2 to

examine if task i can be offloaded to the BS and send the decisions

to the UEs. This step stops when NUE = ∅.

4.1.3 Offloading Tasks in NUE. In the previous paragraphs, we

have shown how to decide which tasks in NUE

can be offloaded

to the BS. Now we move on to consider tasks in NUE

to further

minimize energy consumption.

We follow a similar approach as we did when offloading tasks in

NUE

. The only difference here is the metric used in deciding which

task in NUE

we should consider first, second, and so forth. Instead

of (21), we introduce the following metric (since our objective now

is solely to minimize energy):

ηi = eUEi − eBSi (i ∈ NUE) , (31)

where eUEi is the mean of eUEi (see (2)) and eBSi is defined in (11). ηi is
the potential energy saving on average if task i is offloaded to the

BS. So EPD will iteratively choose the task with the highest ηi from
NUE

, which corresponds to our objective in this step (minimize

energy consumption).

4.2 Schedule Updates within an Interval
In this subsection, we present the second component of EPD: sched-

ule updates within an interval. This algorithm runs upon comple-

tion of a task, either finishing its processing before its cut-off time

or being terminated due to cut-off time. The goal of this component

is to ensure allM processors are fully utilized as much as possible.

Consider task i is completed on processorm at time t . There are
three cases due to the departure of task i , as shown in Fig. 3:

Case (i): Task i is the last task scheduled on processor m, as

shown in Fig. 3(a). Instead of leaving processorm idle, we should

move another task, say j , with the earliest deadline from a queue of

another processor. After this move-over, task j starts its processing
at time t , which is earlier than its previous schedule. Further, the

scheduled processing times for all other offloaded tasks are either

earlier or the same. Thus, all tasks can meet their probabilistic

deadlines. The cut-off times of task j and other tasks on task j’s
original processor will need to be updated based on (29).

Case (ii): Task i is not the last task scheduled on processorm and

the task scheduled after task i has already been received at the BS,

as shown in Fig. 3(b). In this case, we immediately start to process

this task at time t and no update is needed.

Case (iii): Task i is not the last task scheduled on processorm but

the task scheduled immediately after task i has not been received

at the BS yet, as shown in Fig. 3(c). In this case, instead of leaving

processorm idle, we should try to find a task among those already at

the BS and immediately move it over to processorm for processing.

j

jProcessor m

Old Schedule New Schedule

i

Task j’s Processor

tt

(a) Case (i): Task i is the last task on processorm

received receivedProcessor m

Old Schedule New Schedule

i

t t

(b) Case (ii): Task scheduled after task i on processor

m has arrived

Not received

j

j Not received

Task j’s Processor

Processor m

Old Schedule New Schedule

i n

n

Not received

OR

j

n

Not received

OR

j

n

t t

t

t

(c) Case (iii): Task scheduled after task i on processor m has not

arrived

Figure 3: Possible scenarios for schedule updates.

Unlike (i), we must make sure that the tasks scheduled on processor

m can still meet their probabilistic deadlines (22).

To do this, we iteratively examine all received tasks (candidates)

based on EDF, and check whether or not all offloaded tasks’ proba-

bilistic deadlines are still satisfied if the candidate task immediately

starts processing on processorm. If we find that such a task exists,

it will be processed immediately on processorm. Note that at time

t (old schedule), this chosen task could be tentatively scheduled

on another processor (task j in Fig. 3(c)) or on processorm (task n
in Fig. 3(c)). Further, we need to update the cut-off times of tasks

scheduled on processor m and the cut-off times of the tasks on

the original processor of this task based on (29). If such a task can-

not be found, processorm will have to be put in idle until its next

scheduled task arrives and no update of the task schedule is needed.

4.3 Complexity Analysis
In this section, we analyze the complexity of EPD.

For periodic scheduling at the beginning of each time intervalT ,
there are at most N new task requests from N . For a specific task

request i , it has at most M possible allocations. Given a tentative

allocation of task i , we need to check whether all offloaded tasks in

S ∪ {i} can meet their probabilistic deadlines (22), and there are no

more than S +N tasks in S ∪ {i}. For a specific task in S ∪ {i}, say
task j, the complexity depends on the calculation of (27). Though

there are two sums of multiple items in (27):

∑
q∈{qj , j }Cq and∑

q∈{qj , j }Vq , they can be calculated from the result when checking

the task preceding task j, which has O
(
1

)
complexity. Thus, the

complexity of periodic scheduling at the beginning of each time

interval is O
(
NM(S + N )

)
.

For scheduling updates within an interval (upon completion of

a task at a processor), the core step is finding a new task to process
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Figure 4: A cellular network with 25 UEs

if necessary. This step has at most S + N candidate tasks. For each

candidate task, we need to check the probabilistic deadlines (22)

for at most S + N tasks with a complexity of O
(
S + N

)
. Thus, the

complexity of scheduling updates within an interval from EPD is

O
(
(S + N )2

)
.

In summary, both components of EPD have polynomial com-

plexity and we will show that their running times are negligible

compared to interval T in Section 5.

5 NUMERICAL RESULTS
In this section, we evaluate EPD through simulations. We will focus

on percentages of tasks offloaded, average energy consumption per

task (i.e., E in (13)), and deadline violation probability.

5.1 Settings
We consider a cellular network with a BS at the center and 25 UEs

(N ≤ 25) randomly distributed around the BS, as shown in Fig. 4.

The radius of the cell is assumed to be 50 meters, following the

settings in [9, 24]. The wireless channel between a UE and the BS

is characterized by a path-loss model from [1]: β
U(i)
= 38 + 30 ×

log
10
r
U(i)

, where β
U(i)

and r
U(i)

are the path-loss (in dB) and distance

betweenU (i) and the BS (in meters), respectively.

The uplink and downlink data rates ofU (i) are calculated based

on β
U(i)
, minimum bandwidth, transmit power of U (i) and the BS,

and thermal noise using Shannon formula. Without loss of gen-

erality, we assume the channel bandwidth for both uplink and

downlink is 100 MHz. So the minimum bandwidth for each UE is 4

MHz, which occurs when all 25 UEs are active. The transmit powers

of UEs and the BS are set to 0.1 W and 1 W respectively. The ther-

mal noise is set to 10
−10

W. The static circuit power consumption

at the UEs is set to 0.05 W [29].

We consider 5 processors (M = 5) and each one has a processing

speed of F
BS
= 4.3×109 cycles/sec (e.g., Intel core i9-7900X). At each

UE, there is only 1 processor and its processing speed is assumed

to be F
U(i)
= 1.8 × 10

9
cycles/sec (e.g., Qualcomm Snapdragon 855).

The parameter αi in (2) is set to 10
−27

.

For each generated task i at its UE, denote Lup

i and Ldown

i as the file

sizes (in number of bits) before and after its processing. Lup

i is given

for each specific simulation. Without loss of generality, we generate

Ldown

i as 0.5 ∼ 1.5 times of Lup

i based on a uniform distribution.

Then the upper bound of uploading and downloading time can be

calculated based on the file sizes and data rates respectively. The

probabilistic deadline guarantee for each task (i.e., its deadline and

risk level) will be given for each specific simulation.

To simulate task processing uncertainty, Ci is generated by

Ci = ωiL
up

i where ωi is a RV, called “processing density” of task i

Table 1: Percentage of tasks offloaded in EPD

Risk Level ϵ 0.05 0.1 0.15 0.2 0.25

Offload Percentage (%) 55.84 60.75 62.96 64.84 66.26
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Figure 5: Performance of EPD under different ϵ ’s

meaning the required computation cycles per bit for task i . Without

loss of generality, we assume ωi ’s follow the same distribution, i.e.,

the same kind of task. In the simulation, we generate ωi based on

certain distributions with given meanCi/L
up

i and varianceVi/(L
up

i )
2
.

The distribution used here is solely for simulation purposes. EPD

does not know the distribution and the value of Ci beforehand and

only knows its actual value upon the completion of task i .

5.2 A Case Study
We use a case study to examine the internal mechanics of EPD and

its performance behavior. Lup

i is randomly generated from 32 KB to

1 MB based on uniform distribution, which covers a wide range of

file sizes. We assume each UE generates tasks following a Poisson

process with a rate of λ = 1/3 per second. The periodic interval for

EPD scheduling is 200 ms, i.e., T = 200 ms. We simulate the MEC

system for 1 hour, which contains 18,000 scheduling intervals.

For simulation purpose, we assume ω follows Gamma distribu-

tion [10]. A Gamma distribution is usually denoted as Γ(k,θ ), where
k is the shape parameter and θ is the scale parameter [11]. We set

k = 2 and θ = 400 in this subsection. Further, to cover more general

cases, we set the deadline of task i , Di , randomly between 2 to 5

times of the average local processing time (i.e., Ci/FU(i)
) following a

uniform distribution. The reasonwe chose 2 as lower bound and 5 as

upper bound is to avoid overly strict and overly loose probabilistic

deadlines respectively (both lead to trivial cases).

For comparison, we also show the results from state-of-the-art

worst-case optimization [10], where the deadline of each task is set

based on the empirical upper bound of ωi and is a hard deadline

(i.e., no violation is allowed). To the best of our knowledge, this is

the only existing solution that provides deadline guarantees when

addressing task processing uncertainty. Further, since an offline

optimal solution cannot be found due to formidable complexity, we

will only compare EPD with this worst-case optimization.

As shown in Fig. 5(a), the objective value E by EPD is always

smaller than the worst-case approach (with hard deadline guar-

antee). Even for ϵ = 0.05, the per task energy saving is already

31%. When ϵ is increased to 0.25, EPD saves up to 54% in energy

consumption when compared to hard deadline guarantee. When ϵ
increases from 0.05 to 0.25, we see that the objective value E from

EPD decreases monotonically, which is expected since more tasks

can be offloaded to the BS when ϵ increases. This can be validated

by the percentages of offloaded tasks under each ϵ , as shown in
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Table 2: Percentage of offloaded tasks under different Ci ’s

Risk level ϵ 0.05 0.1 0.15 0.2 0.25

Ci = 2.46 × 10
9

61.94 73.79 81.01 84.28 86.92

Ci = 1.97 × 10
9

68.35 83.43 89.52 92.74 94.01

Ci = 1.47 × 10
9

76.99 92.03 95.41 95.95 96.29
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Figure 6: Performance of EPD under different Ci ’s

Table 1. As ϵ increases from 0.05 to 0.25, the percentage of tasks

that are offloaded to the BS increases from 55.84% to 66.26%. For the

case of hard deadline guarantee, only 45.95% tasks are offloaded to

the BS, which is smaller than that by EPD under all risk levels.

Fig. 5(b) shows the deadline violation probability of EPD under

different risk levels. In addition to showing violation probability for

all tasks, we also break down the violation probabilities between

offloaded tasks and tasks processed at the UEs (excluding those

tasks from NUE

but rejected by the BS for offloading). There are

two observations from Fig. 5(b):

First, the violation probabilities are always under the target risk

levels (regardless of whether the tasks are offloaded to the BS or pro-

cessed locally). This affirms our desired probabilistic guarantee for

the tasks. The gap between the risk levels and the actual threshold

violation probabilities is because the used distribution (Gamma) is

not a worst-case distribution that maximizes the deadline violation

probability, as discussed in Section 4.1.

Second, the violation probabilities from locally processed tasks

are higher than those offloaded to the BS. This is because the use

of Rτh (HOL task h) in (28) introduces relaxation at the BS side but

no relaxation is introduced at the UE side.

Nowwe show the running time of EPD on a Xeon E5-1650v2 CPU

using MATLAB R2017b. The running time of periodic scheduling

in EPD has a mean of 0.2951 ms and a standard deviation of 0.2763

ms. The running time of scheduling updates within an interval is

even smaller, with a mean of 0.0330 ms and a standard deviation

of 0.0966 ms. From our simulation, the maximum number of tasks

completed on a processor within one interval is no more than 5.

So the amount of time used to update task schedule on the same

processor is around 0.1650 ms. Therefore, the running time of both

components in EPD are negligible compared to the intervalT = 200

ms and EPD meets the real-time processing environment.

5.3 Impact of Ci

In this section, we study the impact of Ci on EPD’s performance.

For ease of controlling Ci ’s mean (Ci ) and variance (Vi ) in the

simulation study, we set Lup

i = 300 KB for all tasks in this study,

which is a typical file size of a 1440×1080 JPEG 24 bit figure. This

will allow the randomness ofCi to be controlled solely by changing
the distributions of one random variable ωi .

Table 3: Percentage of offloaded tasks under different Vi ’s

Risk Level ϵ 0.05 0.1 0.15 0.2 0.25

Vi = 3.86 × 10
18

65.01 71.32 80.03 86.82 89.89

Vi = 1.93 × 10
18

68.35 83.43 89.52 92.74 94.01

Vi = 0.97 × 10
18

81.71 91.25 94.17 95.22 95.73
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Figure 7: Performance of EPD with different Vi ’s

5.3.1 Impact of Ci . We use three Gamma distributions for Ci to

study the impact ofCi . Specifically, we setωi in (5.1) to Γ(3.125, 320),
Γ(2, 400), and Γ(1.125, 533.33), respectively. Based on (5.1), we ob-

tain Ci ∼ Γ(3.125, 7.86 × 10
8), Ci ∼ Γ(2, 9.83 × 10

8) and Ci ∼

Γ(1.125, 13.11 × 10
8). The variance of all three distributions of Ci ’s

is 1.93 × 10
18

while the means ofCi ’s in the three distributions are:

2.46 × 10
9
, 1.97 × 10

9
and 1.47 × 10

9
.

To focus on the impact of Ci , we use the same deadline for all

tasks. Since a task’s average processing time on a UE is 1.37 seconds

(with a standard deviation of 0.77 seconds) when Ci = 2.46 × 10
9
,

we set Di = 3 seconds for all tasks, which is also 1\λ coincidentally.

The percentages of offloaded tasks are shown in Table 2. The

performance w.r.t. ϵ under different Ci ’s is shown in Fig. 6.

As shown in Table 2, under a given risk level ϵ (each column), the

offloading percentages increases with decreasingCi . This is because

under the same deadline, when Ci decreases, tasks are becoming

“smaller” and more tasks are offloaded to the BS, thus saves more

energy. This is corroborated in Fig. 6(a), where the objective curve

for Ci = 2.46 × 10
9
is the highest and the one for Ci = 1.47 × 10

9

is the lowest. Note that in Fig. 6(a), for a given ϵ , the increase in E

is not proportional to the increase in Ci . For example, at ϵ = 0.15,

when Ci increases 25% from 1.97 × 10
9
to 2.46 × 10

9
, the objective

E increases from 2.00 to 3.06, a 35% increase. This is because the

average energy consumption is higher when a task is processed

locally than offloaded to the BS. So when both factors (offloading

percentage and difference in energy consumption at the UE vs. the

BS) are taken into considerations, the ratio of increase in E is faster

than that in Ci . In general, under the same deadline Di and risk

level ϵ , a higher Ci leads to a lower offloading percentage and a

higher energy consumption per task (objective E).
Fig. 6(b) shows the violation probabilities of all tasks. As shown

in Fig. 6(b), the violation probabilities are all smaller than the risk

level, which validates that EPD guarantees the probabilistic deadline

of tasks. Further, the curves overlap with each other, which suggests

the actual violation probabilities are rather independent of Ci .

5.3.2 Impact of Vi . We use three Gamma distributions for Ci to
study the impact of Vi . We set ωi in (5.1) to Γ(1, 800), Γ(2, 400),
and Γ(4, 200), respectively. Based on the (5.1), we obtain Ci ∼

Γ(1, 19.66×108),Ci ∼ Γ(2, 9.83×108), andCi ∼ Γ(4, 4.92×108). The
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mean of all three distributions of Ci ’s (Ci ’s) is 1.97 × 10
9
while the

variances of Ci ’s (Vi ’s) in these three distributions are: 3.86 × 10
18
,

1.93×1018, and 0.97×1018. The deadline of tasks areDi = 3 seconds.

The percentages of tasks offloaded are shown in Table 3. The

performance w.r.t. ϵ under different Vi ’s is shown in Fig. 7.

As shown in Table 3, under a specific risk level ϵ (each column),

the offloading percentages increase with a decreasing Vi . This is
corroborated in Fig. 7(a), where the objective curve for Vi = 3.86 ×

10
18

is the highest and the one for Vi = 0.97 × 10
18

is the lowest.

The reason is that when Vi increases, we need to allocate more

processing cycles per task in order to meet its probabilistic deadline

guarantee. As a result, fewer tasks can be offloaded to the BS, and

thus the objective E increases. Further, in Fig. 7(a), for a given

ϵ , the increase in E is not proportional to the increase in Vi . For
example, when Vi increases 100% from 1.93 × 10

18
to 3.86 × 10

18
,

the objective E increases 34%, 82% and 37% at ϵ = 0.05, 0.15 and

0.25 respectively. This is because the average energy consumption

is independent of Vi and the percentages of offloaded tasks are not

increasing proportionally to Vi .
Fig. 7(b) shows the violation probabilities of all tasks. As shown

in this figure, the violation probabilities are all smaller than the

risk levels, which validates that EPD guarantees the probabilistic

deadlines. Similar to Fig. 6(b), the overlap of three curves suggests

that deadline violation probabilities are rather independent of Vi .

6 CONCLUSIONS
The lack of knowledge (or uncertainty) of a task’s processing cycles

poses a fundamental challenge to making offloading decisions in

MEC, especially when there is a need to guarantee tasks’ deadlines.

In this paper, we introduced a novel approach by guaranteeing a

task’s probabilistic deadline via chance-constrained programming.

Our approach only uses the estimated mean and variance of the

unknown processing cycles and does not assume any knowledge of

their distributions or worst-case bounds. By employing a powerful

tool called Exact Conic Reformulation (ECR), we were able to re-

formulate probabilistic chance constraints into deterministic ones

without any relaxation errors. Based on ECR, we developed a solu-

tion called Energy-minimized solution with Probabilistic Deadline

guarantee (EPD) that minimizes the energy consumption at the UEs

while guaranteeing probabilistic deadlines of all tasks when the

system is not overloaded. When the system is overloaded and not

all tasks’ deadlines can be guaranteed, EPD maximizes the number

of tasks that can meet their probabilistic deadlines while attempting

to minimize energy as much as possible. Simulation results show

that EPD can offer a significant improvement in energy saving

when compared to the state-of-the-art approach based on upper

bounds.
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