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Abstract—Recently, it has been recognized that there is a seri-
ous limitation with the original Age of Information (AoI) metric
in terms of quantifying true freshness of information content.
A new metric, called Age of Incorrect Information (AoII), has
been proposed. By further refining this new metric with practical
considerations, we introduce Age of Outdated Information (Ao2I)
metric. In this paper, we investigate a scheduling problem for
minimizing Ao2I in an IoT data collection network. We derive a
theoretical lower bound for the minimum Ao2I that any scheduler
can achieve. Then we present Heh—a low-complexity online
scheduler. The design of Heh is based on the estimation of a novel
offline scheduling priority metric in the absence of knowledge of
the future. We prove that at each time, transmitting one source
with the largest offline scheduling priority metric minimizes Ao2I.
Through extensive simulations, we show that the lower bound is
very tight and that the Ao2I obtained by Heh is close-to-optimal.

Index Terms—Age of Information, Age of Outdated Informa-
tion, Age of Incorrect Information, Scheduling

I. INTRODUCTION

Age of Information (AoI) is an application layer metric
that has been used to estimate freshness of information [1],
[2]. It measures the elapsed time between the present and
the time when the stored information was initially generated
at its source. Since its inception, AoI has attracted active
research efforts due to its unique characterization of latency
from an application perspective (see [3] for a comprehensive
bibliography). A main line of AoI research has been focused
on minimizing AoI under certain resource constraints, with re-
source ranges from bandwidth (e.g., [4]–[8]), energy (e.g. [9]–
[12]), to throughput (e.g., [13]–[16]). Another line of research
has been focused on modeling, analysis, and optimization of
AoI (e.g., [17]–[19]). There are also some other branches of
AoI research, such as scheduling subject to AoI constraints
(e.g., [20]–[22]), game theory for AoI (e.g., [23]–[25]), and
AoI applications (e.g., [26], [27]), to name a few.

As the research community accumulates more knowledge on
AoI, it starts to realize its limitation in quantifying freshness
of information. The fundamental issue here resides in the
definition of age. Should the measure of age starts from the
generation time of the information or from the first time
instance when the information content changes? For example,
if the time for information collected from its source has been
elapsed for, say one day, and that there has been no new update
at the source during this period, does this information still
considered fresh or outdated? The original definition of AoI
only accounts for the lapsed time since the information was

initially generated, rather than how long the information has
been outdated. But for most real-world applications, informa-
tion with a large AoI may still be considered “fresh" if there
are no new updates of information at the source. In other word,
the existing definition of AoI does not accurately capture the
true freshness of information from content perspective.

There have been some attempts to improve the original AoI
metric definition, such as Age of Synchronization (AoS) [28]
and Effective AoI (EAoI) [29].1 AoS was introduced by Zhong
et al. for a distributed content caching system [28]. Unlike
AoI (which increases linearly), AoS remains zero when the
source has no samples to send; similar to AoI, AoS grows
linearly with time when the source collects a sample. Like
AoI, AoS focuses on the time of sample collection at the
source, and does not take into account the information content
in the sample. EAoI was introduced by Yin et al. for proactive
information update (from users’ perspective) where a single
server serves multiple users and the server may transmit
information to a user only after the user makes a request [29].
Unlike AoI (which increases linearly), EAoI remains zero
when the user does not make a transmission request; similar
to AoI, EAoI grows linearly with time once the user makes a
query for transmitting information. Similar to AoS, EAoI does
not consider the information content in the sample.

Recently, Maatouk et al. [31] introduced a new metric called
Age of Incorrect Information (AoII). AoII measures the elapsed
time between the present and the most recent time when the
content of the sample at its source is the same as the content
of the sample stored at the destination.2 By definition, AoII
will increase linearly with time but will drop under two events:
(i) when the destination receives a new sample, and (ii) when
the destination receives an indication3 that its stored sample
contains the same information as the latest sample at the
source. AoII represents a major leap forward in AoI metric
as it focuses on quantifying information freshness through the
actual content in the information.

1Another metric called Generalized AoI (GAoI)—introduced by Feng et al.
[30], measures uncertainty of collected samples. Since GAoI does not measure
freshness of information from latency perspective, we omit its discussion in
this paper.

2Although a general definition of AoII (involving product of two functions)
exists in [31], it has not been well understood. To date, only a special case of
the general definition has been studied [31]–[34]. Therefore, by AoII in this
paper, we refer to the special case that is well understood.

3Maatouk et al. [31] assume such an indication can be sent from a source
to the BS with zero latency.



Following the new AoII definition in [31], Maatouk et al.
[31] studied an AoII minimization problem in a transmitter-
receiver pair scenario, with an optimal scheduling policy
developed. Chen and Ephremides [32] proposed an optimal
scheduling policy for the same AoII minimization problem in
[31] but considering a different model for source’s sampling
process. In [33], Kam et al. presented extensive numerical
results to compare metrics of real-time error, AoI, and AoII
under different scheduling policies. Kriouile and Assaad [34]
designed a heuristic scheduling policy for minimizing AoII
in a scenario where multiple users send status updates to a
central entity.

Although results from [31]–[34] offer some early under-
standings on AoII, they share some serious limitations. They
all assume a small and known state space for information
content. This is because by definition, the AoII metric is
too sensitive to information content. Hence mathematically,
AoII is only tractable in very simple settings where (i) the
state space for information content is small and known;
and (ii) once the content of information changes, there is a
reasonable probability that it will return to the previous state
in the near future. However, in reality the state space for
information content is usually very large (possibly infinite and
unknown) and the likelihood of information content returning
to a previous state in the near future is very small.

Inspired by the idea of AoII in [31], this paper aims to
address the limitation of the state-of-the-art through a number
of new advancements. First, we improve the AoII metric
by introducing Age of Outdated Information (Ao2I). Ao2I
measure the elapsed time between the present and the first
time when the stored information at the destination becomes
outdated (changed) when compared at its source. Comparing
to AoII, Ao2I is imminently suitable to work with a very
large (usually unknown) state space for information content,
which is one would likely encounter in the real world and
is more general than that considered by [31]–[34]. Using
this improved metric, we investigate a scheduling problem
for minimizing Ao2I in an IoT network. This is a canonical
scenario considered widely in AoI research (such as [4], [5],
[7], [8], [13], [16], [20]–[22], [35]) and has a wide range of
applications for data collection. The main contributions of this
paper are summarized as follows:

• We develop a theoretical lower bound for the mini-
mum Ao2I that can be used as a benchmark for any
scheduler. To do this, we first develop a connection
between a source’s Ao2I and its data rate. Leveraging
this connection, we replace the Ao2I objective in the
original scheduling problem with a data rate objective.
Subsequently, we obtain a new optimization problem
for minimizing data rates which is convex. The optimal
solution of the reformulated problem gives a lower bound
for the minimum Ao2I that any scheduler can achieve.

• To help develop an online scheduler, we first propose
a novel priority metric for an offline optimal scheduler.
We prove that the offline scheduler that transmits the
source with the largest priority metric in each time slot is
optimal for minimizing Ao2I. Then we present Heh—a

Fig. 1. Reference model: N sources collect samples from the environment
and forward them to a BS through a shared wireless channel.

low-complexity online scheduler. The essence of Heh is
to first estimate the scheduling priority metric based on
past history without any knowledge of the future, and then
schedule the source with the largest estimated priority
metric for transmission in each time slot.

• Through extensive simulations, we find that Ao2I ob-
tained by Heh is very close to the lower bound. This
indicates that (i) Heh is near-optimal for minimizing
Ao2I, and (ii) the lower bound is very tight (very close
to the minimum Ao2I).

The rest of the paper is organized as follows. In Section II,
we describe the system model that we will use in this paper
to study Ao2I. We also formally define Ao2I mathematically
and introduce the Ao2I scheduling problem. In Section III, we
derive a lower bound for the minimum Ao2I. In Section IV, we
present Heh, a low-complexity online scheduler that minimizes
Ao2I. In Section V, we present results from our simulation
experiments. Section VI concludes this paper.

II. PROBLEM STATEMENT

Consider a scenario where there are N data collection
sources and one receiving base station (BS) as shown in Fig. 1.
Each source collects data samples from its environment and
forwards them to the BS through a common (shared) wireless
data channel. We assume (uplink) transmission time is slotted
and each source collects a data sample at each time slot
(see, e.g., [7], [8], [13], [16], [20]–[22], [35]). When a source
is chosen for transmission at time t,4 it will only transmit
its freshest sample, i.e., the sample collected at time t, to
the BS over the wireless data channel. At the BS side, it
only maintains (stores) the sample that it has most recently
received from each source. In this research, we assume: 1) the
transmission of a sample takes exactly one time slot; and 2)
at most one sample can be transmitted over the data channel
in each time slot. This means that at most one source may
transmit in each time slot.

A. Ao2I Definition and Notations
Denote AB

i (t) as the AoI of source i at the BS at time t:

AB
i (t) = t−GB

i (t), (1)

4For clarity, we use the term “at time t" to refer to “at the beginning of
time slot t" and use the term “in time slot t" to refer to the underlying action
is completed “at the end of time slot t".



where GB
i (t) is the generation time of the sample from source

i that is currently (at time t) stored at the BS.
As discussed in Section I, AoI only accounts for raw lapsed

time since the sample was initially generated, but not how long
the information content in the sample has been outdated. In
many scenarios, a sample with a large AoI may still contain
the freshest information if there is no change of information
content in the new samples at the source.

To address this issue, Maatouk et al. [31] proposed a new
metric called AoII as follows. Denote XS

i (t) as the content of
the sample collected by source i at time t. Denote XB

i (t) as
the content of the sample that is from source i and stored at
the BS at time t. The AoII of source i at the BS at time t is:

∆B
i (t) = t− max

t̂≤t, t̂∈Z+

{
t̂ : XS

i

(
t̂
)
= XB

i (t)
}
, (2)

where Z+ is the set of positive integers. By definition, AoII
measures the elapsed time between the present (t) and the most
recent time when source i collects a sample that contains the
same content as the sample stored at the BS at time t.

As discussed in Section I, the AoII ∆B
i (t) is highly sensitive

to XS
i (t) (i.e., ∆B

i (t) drops at any time t if XS
i (t) = XB

i (t)).
Hence existing AoII studies, including [31]–[34], indicate
that mathematically ∆B

i (t) is only tractable under following
assumptions:

• The state space for XS
i (t)’s is small and known;

• The transition probabilities between different states for
XS

i (t)’s is known;
• Once XS

i (t) changes (i.e., once XS
i (t) ̸= XS

i (t − 1)),
there is a reasonable probability that it will return to the
previous state in the near future.

But in reality, the state space for XS
i (t)’s is usually very

large (possibly infinite and unknown). As such, it is very
difficult to obtain the transition probabilities among a large
number of state space. Further, the likelihood of information
content returning to a previous state in the near future is very
small.

To improve AoII metric for more general scenarios and
more amenable for mathematically analysis, we propose an
improved metric called Ao2I as follows. Denote ySi (t1, t2) as
an indicator of whether or not the sample content has changed
in the time interval [t1, t2] at source i, i.e.,

ySi (t1, t2) =

{
1, if there exists a t̂ ∈ [t1, t2], t̂ ∈ Z+

such that XS
i (t̂) ̸= XS

i (t1);

0, otherwise.
(3)

Denote US
i (t) as the largest time since GB

i (t) such that
the information content of the sample remains unchanged at
source i,5 i.e.,

US
i (t) = max

GB
i (t)≤t̂<t, t̂∈Z+

{
t̂ : ySi

(
GB

i (t), t̂
)
= 0

}
. (4)

By definition in (4), i.e., t̂ < t under the max function, we
have US

i (t) < t. This is because we assume that it requires one
time slot for the source to send a feedback to the BS to report

5Note that US
i (t) is only defined for integer values of t in our discrete-time

system model.

Fig. 2. A 2-state discrete-time Markov process to characterize the content
change behavior at source i.

a change (details on the feedback procedure are presented later
in Section II-C). Note that US

i (t) is the last time when XB
i (t)

is fresh at source i, and
(
US
i (t) + 1

)
is the first time when

XB
i (t) is outdated at source i.6 Denote DB

i (t) as the Ao2I of
source i at the BS at time t. Then we have:

DB
i (t) = t−

(
US
i (t) + 1

)
. (5)

Ao2I quantifies the elapsed time between the present (t) and
the first time when the sample stored at the BS is changed
(outdated) at its source (US

i (t) + 1).
It is clear that the Ao2I DB

i (t) addresses the limitation
of AoII ∆B

i (t). ∆B
i (t) drops whenever the source collects

a new sample that contains the same content as the sample
currently stored at the BS, while DB

i (t) linearly increases
with time after the first time when the sample currently stored
at the BS is changed (outdated) at its source. In contrast to
AoII, Ao2I works best when the state space for information
content is large (possibly unknown and infinite) and there is
little probability that the information content will return to a
previous state in the near future. Moreover, Ao2I only requires
the knowledge of transition probability between two states
(change in information content or not) rather than transition
probabilities among the states of information content, which
are substantially harder to obtain. As we shall see shortly,
Ao2I is much more amenable to mathematical analysis and
optimization than AoII.7

It is not hard to see that the Ao2I DB
i (t) is fundamentally

different from the AoI AB
i (t). D

B
i (t) takes into account of the

actual information content in the sample while AB
i (t) does

not. As such, DB
i (t) will not increase with time as long as

the sample content currently stored at the BS is not outdated.
In contrast, AB

i (t) linearly increases with time when the BS
is waiting to receive a new sample even though the sample
content currently stored at the BS is not outdated. In this
sense, Ao2I is a much more accurate measure of freshness
in information content than AoI.

B. Modeling Sample Content Update
In this paper, we assume the state (change or no change)

of successive sample’s content follows a 2-state discrete-time

6To be more accurate, (i) if US
i (t) < t − 1, US

i (t) + 1 is the first time
when XB

i (t) is outdated; however, (ii) if US
i (t) = t − 1, the BS does not

know whether or not US
i (t)+1 = t is the first time when XB

i (t) is outdated.
This is because it requires one time slot for the source to send a feedback to
the BS to report a change.

7Here we remark that both AoII and Ao2I are only suitable when informa-
tion content has discrete state space. In the case when the content follows a
continuous state, e.g., a Brownian motion, one should first construct a discrete
model (through discretization). Such discretization of continuous information
content has been explored in [36].



Markov chain as depicted in Fig. 2. Denote cSi (t) ∈ {0, 1}
as a binary state variable, indicating whether or not sample’s
content changes at source i at time t as compared to t− 1:

cSi (t) =

{
1, if XS

i (t) ̸= XS
i (t − 1);

0, otherwise.
(6)

Denote pi (0 < pi < 1) and qi (0 < qi < 1) as state transition
probabilities with the following definitions:

P
(
cSi (t+ 1) = 0|cSi (t) = 0

)
= pi; (7a)

P
(
cSi (t+ 1) = 1|cSi (t) = 0

)
= 1− pi; (7b)

P
(
cSi (t+ 1) = 1|cSi (t) = 1

)
= qi; (7c)

P
(
cSi (t+ 1) = 0|cSi (t) = 1

)
= 1− qi. (7d)

That is, if the content in the sample does not change from t−1
to t (i.e., cSi (t) = 0), then with a probability of pi, the content
will remain unchanged from t to t+1 (i.e. cSi (t+1) = 0) and
so forth. Likewise, if the content in the sample changes from
t − 1 to t (i.e., cSi (t) = 1), then with a probability of qi, the
content will keep changing from t to t+1 (i.e., cSi (t+1) = 1)
and so forth. It should be clear that the Markov model in Fig. 2
is independent of the state space of XS

i (t)’s which can be very
large (likely infinite) and unknown.

C. Feedback of Updates to the BS

An important question to ask is: How does the BS know
any content change at source i (i.e., cSi (t))? Clearly, obtaining
such a knowledge requires a feedback from source i to the
BS. Many feedback mechanisms may be employed for this
purpose. Here we illustrate a simple 1-bit feedback approach.

Specifically, at each time t, source i knows the value of
cSi (t) after it collects a new sample. Then source i sends a 1-bit
feedback cSi (t) to the BS (over a dedicated control channel).8

Given that only 1-bit is required in feedback, it can be received
by the BS at time t+ 1.

D. Problem Statement and Technical Challenges

Denote D̄B
i as the long-term average of source i’s Ao2I at

the BS. We have:

D̄B
i = E

[
lim

T→∞

1

T
·

T∑
t=1

DB
i (t)

]
. (8)

Denote D̄B as the average Ao2I over all N sources at the
BS. We have :

D̄B =
1

N
·

N∑
i=1

D̄B
i . (9)

The BS needs a scheduler to decide which source should
transmit in each time slot. Denote S(t)—an N × 1 vector—as
the scheduling decision for time slot t, where the i-th element
in S(t) is Si(t) ∈ {0, 1}. Si(t) = 1 represents that source i

8To ensure reliability of feedback in a lossy channel, a reliable protocol
may be employed (see, e.g., [37]).

will transmit a sample in t, and Si(t) = 0 otherwise (i.e., no
transmission for source i). We have

N∑
i=1

Si(t) ≤ 1, for all t ∈ Z+. (10)

Our goal is to find an optimal scheduler SOPT(t) that minimizes
D̄B .9 We denote D̄B

OPT as the minimum (optimal) D̄B that is
achieved by SOPT(t).

III. PERFORMANCE BOUND

In this section, we develop a theoretical lower bound for
D̄B

OPT. This lower bound can be used as a benchmark to
measure the performance of any scheduler for minimizing D̄B .

For a given scheduler S(t) with its i-th element Si(t) ∈
{0, 1}, i = 1, 2, · · · , N , define S̄i as:

S̄i = lim
T→∞

1

T
·

T∑
t=1

Si(t). (11)

Intuitively, S̄i represents the long-term proportion of time that
source i is scheduled for transmission (data rate of source i).
Denote S̄ as the vector of S̄i’s. Similar to S̄, define S̄OPT for the
optimal scheduler SOPT(t), with its i-th element to be S̄OPT,i.

In this section, we first develop a lower bound for D̄B
OPT

with the assumption that S̄OPT was known a priori. Then in
Section III-B, we present a lower bound for D̄B

OPT by removing
this assumption.

A. A Lower Bound for D̄B
OPT with Known S̄OPT

Denote D̄B
LB as a lower bound for D̄B

OPT. Given S̄OPT, can
we find D̄B

LB? The following lemma addresses this question.
Lemma 1: Given S̄OPT, with S̄OPT,i (i = 1, 2, · · · , N ) being

its i-th element, a lower bound for D̄B
OPT is

D̄B
LB =

1

N

N∑
i=1

max

{
0,

1

2

(
1

S̄OPT,i
− (S̄OPT,i + 2) · ri + 1

)}
,

(12)
where

ri = max

{
qi +

1− qi
pi

·
(

1

1− pi
+ pi − 1

)
,

1

1− pi

}
. (13)

We offer a proof sketch here. A complete proof is given
in Appendix A. Recall that S̄OPT,i is the proportion of time
that source i is scheduled for transmission under the optimal
solution SOPT(t). Hence 1

S̄OPT,i
estimates the number of time

slots between two consecutive transmissions from source i.
By the Ao2I definition, DB

i (t) should first remain 0 and then
increase linearly with time for these 1

S̄OPT,i
time slots. Here

ri is the expected number of time slots for DB
i (t) to remain

0, which can be derived from the Markov model in Fig. 2.
Therefore, by the end of these 1

S̄OPT,i
time slots, DB

i (t) is at
least ( 1

S̄OPT,i
− ri). To get a lower bound for the average value

of DB
i (t), for these 1

S̄OPT,i
time slots, we consider an extreme

case where DB
i (t) remains 0 in the first ri time slots, and

9All of our results to this objective can be directly extended to another
objective of minimizing the weighted sum

∑N
i=1 wi · D̄B

i .



increases from 1 to ( 1
S̄OPT,i

− ri) in the remaining ( 1
S̄OPT,i

− ri)

time slots. In D̄B
LB in (12), 1

2

(
1

S̄OPT,i
− (S̄OPT,i + 2) · ri + 1

)
is an estimate on (1 + 2 + · · ·+ ( 1

S̄OPT,i
− ri))/

1
S̄OPT,i

, i.e., an
estimate on the DB

i (t) averaged over these 1
S̄OPT,i

time slots in
the extreme case.

B. From Known S̄OPT to Unknown S̄OPT

The D̄B
LB given in Lemma 1 requires the knowledge of S̄OPT.

However, such knowledge is unavailable in practice. In this
section, we aim to remove this assumption.

It is clear that since D̄B
LB is a lower bound of D̄B

OPT, then a
lower bound for D̄B

LB must also be a lower bound for D̄B
OPT.

Now we will try to find a lower bound for D̄B
LB in (12) without

requiring the knowledge of S̄OPT.
We propose to solve a problem that minimizes the RHS

of (12) subject to the constraints that S̄OPT is feasible. Then
the optimal solution of this optimization problem will give us
a lower bound for D̄B

LB in (12). More formally, we consider
the following problem OPT-LB:

OPT-LB: min

N∑
i=1

max

{
0,

1

2

(
1

xi
− (xi + 2) · ri + 1

)}

s.t.
N∑
i=1

xi ≤ 1, (14)

xi ≥ 0 for all i = 1, 2, · · · , N. (15)

We argue that constraints (14) and (15) are necessary condi-
tions for a scheduler (including SOPT(t)) to be feasible. This
is because for any feasible scheduler S(t), from (11), we can
get S̄ (a vector of S̄i’s). Clearly (15) holds for S̄. Further,

N∑
i=1

S̄i = lim
T→∞

1

T
·

N∑
i=1

T∑
t=1

Si(t)

= lim
T→∞

1

T
·

T∑
t=1

N∑
i=1

Si(t) ≤ lim
T→∞

1

T
·

T∑
t=1

1 = 1,

indicating that (14) holds for S̄ since S(t) is a feasible
scheduler and must satisfy the constraint (10). Therefore, by
solving OPT-LB and finding an optimal solution to the xi’s
(denoted as a vector x∗ with x∗

i being its i-th element), we
can find a lower bound for D̄B

OPT. The result is stated in the
following lemma.

Lemma 2: A lower bound for D̄B
OPT is

D̄B
LB =

1

N
·

N∑
i=1

max

{
0,

1

2
·
(

1

x∗
i

− (x∗
i + 2) · ri + 1

)}
, (16)

where ri of each i = 1, 2, · · · , N is defined in (13) and x∗ is
the optimal solution to OPT-LB.

OPT-LB is a convex optimization problem and a commercial
off-the-shelf (COTS) solver such as CVX [38] can be used
to solve it efficiently. Clearly, OPT-LB does not require the
knowledge of S̄OPT.

IV. HEH: AN ONLINE SCHEDULER FOR MINIMIZING AO2I

In this section we present Heh10—an online scheduling
algorithm for minimizing D̄B . At each time t, Heh decides
which source to transmit based on pi, qi, DB

i (t), and cSi (t−1)
for i = 1, 2, · · · , N . Note that at time t, the BS knows cSi (t−1)
but not cSi (t) (see Section II-C).

A. Motivating Idea

At time t, if scheduling of source i’s transmission can
minimize D̄B (as compared to scheduling of any other
source’s transmission), then source i should be selected for
transmission. So the key question becomes: What criterion
should we use to identify the source whose transmission will
minimize D̄B at time t? In the rest of this section, we develop
such a criterion.

Recall that D̄B is the average Ao2I achieved by a specific
scheduler, say S(τ) (τ = 1, 2, · · · ). Also recall Si(t) ∈ {0, 1}
is the i-th element of S(τ) at time τ = t. Now define D̄B

S(t)(τ)

as the “modified" D̄B that is achieved by the following
scheduler S(t)(τ):

S(t)(τ) =


S(τ) if τ < t;

R(t), if τ = t;

S(τ), if τ > t.

(17)

That is, S(t)(τ) has the same scheduling behavior as S(τ)
except at time t when it follows scheduling R(t), which may
differ from S(t). For ease of notation, we abbreviate D̄B

S(t)(τ)

as D̄B(R(t)) when there is no confusion.
With the above notation, we consider two different sources

i and j that may be selected for transmission at time t.
• If at time t source i transmits, we have:

D̄B(R(t): Ri(t) = 1, Rk(t) = 0 for k ̸= i) =
1

N
·D̄B

i (Ri(t) = 1) +

N∑
k=1,k ̸=i

D̄B
k (Rk(t) = 0)

 . (18)

• Likewise, if at time t source j transmits, we have:

D̄B(R(t): Rj(t) = 1, Rk(t) = 0 for k ̸= j) =
1

N
·D̄B

j (Rj(t) = 1) +

N∑
k=1,k ̸=j

D̄B
k (Rk(t) = 0)

 . (19)

Subtracting (19) from (18), we have:

(18) − (19) =
1

N

((
D̄B

j (Rj(t) = 0)− D̄B
j (Rj(t) = 1)

)
−
(
D̄B

i (Ri(t) = 0)− D̄B
i (Ri(t) = 1)

))
. (20)

Clearly that if (20) is positive, transmitting source i leads
to a greater D̄B than transmitting source j. So we should
transmit source j. Otherwise, we should transmit source i.

10Heh is the ancient Egyptian god of time.



By the D̄B
i definition in (8), (20) becomes:

lim
T→∞

1

N · T
·

T∑
τ=1

(
DB

j (τ |Rj(t) = 0)−

DB
j (τ |Rj(t) = 1)

)
− lim

T→∞

1

N · T
·

T∑
τ=1

(
DB

i (τ |Ri(t) = 0)−DB
i (τ |Ri(t) = 1)

)
. (21)

To decide whether source i or source j should transmit, we
can ignore N , and focus solely on the following:

lim
T→∞

1

T

T∑
τ=1

(
DB

j (τ |Rj(t) = 0)−DB
j (τ |Rj(t) = 1)

)

− lim
T→∞

1

T

T∑
τ=1

(
DB

i (τ |Ri(t) = 0)−DB
i (τ |Ri(t) = 1)

)

= lim
T→∞

1

T

T∑
τ=t+1

(
DB

j (τ |Rj(t) = 0)−DB
j (τ |Rj(t) = 1)

)

− lim
T→∞

1

T

T∑
τ=t+1

(
DB

i (τ |Ri(t) = 0)−DB
i (τ |Ri(t) = 1)

)
.

(22)

To decide which node (i or j) has a higher priority, we
want to know whether (22) is positive or not. This motivates
us to define a scheduling priority metric Pi(t) for each source
i = 1, 2, · · · , N at each time t as follows:

Pi(t) = lim
T→∞

1

T
·
( T∑

τ=t+1

DB
i (τ |Ri(t) = 0)

−
T∑

τ=t+1

DB
i (τ |Ri(t) = 1)

)
. (23)

From (22), at time t, if Pi(t) ≥ Pj(t) for any j ̸= i, then we
should transmit source i as its transmission minimizes D̄B (as
compared to any other nodes), i.e., we should select the source
with the largest scheduling priority metric for transmission.

Now the remaining question is: How to calculate Pi(t)
for each source i according to (23)? Note that using (23)
to calculate Pi(t) is not possible for an online algorithm
(no knowledge of the future). Nevertheless, we can use the
scheduling priority metric in (23) as a guidance to develop an
online algorithm. Specifically, we propose to estimate Pi(t)
based on past history (without any knowledge of the future)
in the next section.

B. Estimating Priority Metric Pi(t)

Denote P̃i(t) as an estimate of Pi(t) in (23). The goal of
this section is to develop an expression for P̃i(t).

We perform this calculation by conditioning on the status
of DB

i (τ) at time τ = t, i.e., DB
i (t) > 0 or DB

i (t) = 0.
Case 1: DB

i (t) > 0. In this case, to calculate P̃i(t), we
first estimate

∑T
τ=t+1 D

B
i (τ |DB

i (t) > 0, Ri(t) = 0), and then
estimate

∑T
τ=t+1 D

B
i (τ |DB

i (t) > 0, Ri(t) = 1).

Estimating
∑T

τ=t+1 D
B
i (τ |DB

i (t) > 0, Ri(t) = 0): When
DB

i (t) > 0 and Ri(t) = 0, starting from time τ = t + 1,
DB

i (τ) increases linearly with time τ . Hence we estimate∑T
τ=t+1 D

B
i (τ |DB

i (t) > 0, Ri(t) = 0) as follows:

T∑
τ=t+1

DB
i (τ |DB

i (t) > 0, Ri(t) = 0)

estimated by
=

T−t∑
k=1

(DB
i (t) + k)

= (T − t) ·DB
i (t) +

1

2
· (T − t) · (T − t+ 1). (24)

Estimating
∑T

τ=t+1 D
B
i (τ |DB

i (t) > 0, Ri(t) = 1): When
DB

i (t) > 0 and Ri(t) = 1, starting from time τ = t + 1,
DB

i (τ) first remains 0 for a certain number of time slots and
then increase linearly with time. Denote mi(t) as the number
of time slots for DB

i (τ) to remain 0, i.e., from time τ = t+1
to time τ = t+mi(t), DB

i (τ) = 0, and starting from time τ =
t+mi(t) + 1, DB

i (τ) increases linearly with time. Hence we
estimate

∑T
τ=t+1 D

B
i (τ |DB

i (t) > 0, Ri(t) = 1) as follows:

T∑
τ=t+1

DB
i (τ |DB

i (t) > 0, Ri(t) = 1)

estimated by
=

T−t−mi(t)∑
k=1

k

=
1

2
· (T − t−mi(t)) · (T − t−mi(t) + 1). (25)

Now the remaining question is: How to calculate mi(t)?
The result is stated in the following lemma.

Lemma 3: For mi(t), we have:

E[mi(t)|cSi (t− 1) = 0] =
2− pi
1− pi

− (pi + qi);

E[mi(t)|cSi (t− 1) = 1] = qi +
1− q2i
1− pi

.

We offer a proof sketch here. A complete proof is given in
Appendix B. Based on source i’s Markov model in Fig. 2, it
can be shown that (i) 2−pi

1−pi
− (pi+ qi) is the expected number

of time slots when DB
i (τ) remains 0 since τ = t + 1, given

that cSi (t−1) = 0 and Ri(t) = 1; and qi+
1−q2i
1−pi

is the expected
number of time slots when DB

i (τ) remains 0 since τ = t+1,
given that cSi (t− 1) = 1 and Ri(t) = 1.

Considering that

P̃i(t|DB
i (t) > 0) = lim

T→∞

1

T
·
(
(24)− (25)

)
= DB

i (t)+mi(t),

after we use E[mi(t)] as an estimate for mi(t) in (25), we
can find P̃i(t|DB

i (t) > 0):

P̃i(t|DB
i (t) > 0, cSi (t−1) = 0) = DB

i (t)+
2− pi
1− pi

−(pi+qi);

and

P̃i(t|DB
i (t) > 0, cSi (t− 1) = 1) = DB

i (t) + qi +
1− q2i
1− pi

.



Algorithm 1 Heh’s Scheduling at Time t at the BS

1: Calculate P̃i(t) according to (26) for all i.
2: Transmit one source which has the largest P̃i(t).

(a) D̄B
Heh vs D̄B

LB. (b) DB
i (t) of two sources.

Fig. 3. Behavior of D̄B
Heh and DB

i (t) in a case study (N = 100).

Case 2: DB
i (t) = 0. In this case, to calculate P̃i(t), we

first estimate
∑T

τ=t+1 D
B
i (τ |DB

i (t) = 0, Ri(t) = 0), and then
estimate

∑T
τ=t+1 D

B
i (τ |DB

i (t) = 0, Ri(t) = 1). Following an
analysis similar to our Case 1, we can find P̃i(t|DB

i (t) = 0):

P̃i(t|DB
i (t) = 0, cSi (t− 1) = 0) = 2− (pi + qi);

and

P̃i(t|DB
i (t) = 0, cSi (t− 1) = 1) = qi + qi ·

1− qi
1− pi

.

We summarize our results for P̃i(t) as follows:

P̃i(t) =



DB
i (t)+

2−pi
1−pi

−(pi+qi)
if DB

i (t) > 0 and
cSi (t − 1) = 0;

DB
i (t)+qi+

1−q2i
1−pi

if DB
i (t) > 0 and

cSi (t − 1) = 1;

2−(pi+qi)
if DB

i (t) = 0 and
cSi (t − 1) = 0;

qi+qi·
1−qi
1−pi

if DB
i (t) = 0 and

cSi (t − 1) = 1.

(26)

Note that in (26), the calculation of P̃i(t) at time t only
requires the knowledge of DB

i (t), cSi (t− 1), pi, and qi, all of
which do not require any information from the future.

C. Summary of Algorithm—Heh
By calculating the estimated scheduling priority metric

P̃i(t) for each source i per (26), our scheduler Heh selects one
source with the largest P̃i(t) for transmission at each time t.
Details of Heh are given in Algorithm 1.

Now we discuss the time complexity of Heh. To calculate
P̃i(t) for i = 1, 2, · · · , N , the time complexity is O(N). After
that, to select the largest P̃i(t), the time complexity is O(N).
Thus, the total time complexity of Heh at each time t is O(N).

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of Heh. First, we
use a case study to demonstrate how D̄B and DB

i (t) achieved
by Heh evolve with time t, respectively, and compare it to
the lower bound D̄B

LB that we derived in Lemma 2. Then
we investigate how the D̄B achieved by Heh is affected by
different system parameters. For simplicity, we denote D̄B

Heh as

the D̄B achieved by Heh. For each instance in our simulation,
we simulate T = 1, 000, 000 time slots.

A. A Case Study

We set N = 100, and for each source i, both pi and qi are
randomly generated by a uniform distribution from [0.5, 0.99]
(pi and qi can be different). Using the lower bound expression
in (16), we find that D̄B

LB = 41.77. Besides, we find that D̄B
Heh

(when t = T ) = 41.84, which is very close to our lower bound
D̄B

LB. Moreover, in Fig. 3(a), we plot D̄B
Heh from time t = 1 to

time t = 2000. We observe that D̄B
Heh up to time t converges

quickly to D̄B
LB and D̄B

Heh (at time T ). Since the minimum
D̄B

OPT lies between D̄B
Heh and D̄B

LB, we conclude that:
• The lower bound D̄B

LB is very tight;
• D̄B

Heh is near-optimal.
To see the behavior of DB

i (t) for each source i, we choose
sources i = 1 and i = 2 and plot DB

1 (t) and DB
2 (t) in Fig. 3(b)

from time t = 1440 to time t = 1740. For source 1, p1 = 0.95
and p2 = 0.55. For source 2, p1 = 0.9 and p2 = 0.6. For each
of the two sources, DB

i (t) remains 0 for multiple time slots
and then increases linearly with time after each transmission.

B. Varying Number of Sources

We evaluate Heh under varying number of source nodes
(N ). For each source i = 1, 2, · · · , N , pi and qi are generated
in the same way as in the case study. In Table I, we present
results of normalized D̄B

Heh, i.e., D̄B
Heh/D̄

B
LB, for N varying

from 50 to 150. For each N , we simulate 100 instances
(each with different pi’s and qi’s). For all cases, the mean
of D̄B

Heh/D̄
B
LB is within 1.07 and the variance is within 0.001.

Further the maximum of D̄B
Heh/D̄

B
LB is under 1.16 while the

minimum is 1.

C. Varying Transition Probabilities

Finally we consider the impact of pi’s and qi’s on Heh’s
performance. Instead of varying pi’s and qi’s completely
random, we consider some scenarios that have real world
implications.

• Rare Event Reporting Based on the Markov model in
Fig. 2, this corresponds to the scenario of large pi’s and
small qi’s, where each source tends to remain mostly in
the 0 state and rarely makes a transition to the 1 state.
Even it goes to 1 state, it tends to go back to the 0 state
more than it would stay in the 1 state. So we generate pi’s
and qi’s randomly following a uniform distribution from
[0.7, 0.99] and qi = 1 − pi, respectively. We consider
N = 50 and N = 100, respectively. For each N , we
simulate 100 instances (each with different pi’s and qi’s)
and give the results of D̄B

Heh/D̄
B
LB in Table II, where the

mean of D̄B
Heh/D̄

B
LB is within 1.02, the variance is 0.00,

and the maximum is under 1.09.
• Active Surveillance This corresponds to the scenario of

large qi’s and small pi’s in the Markov model (see Fig. 2).
In this scenario, each source tends to remain mostly in
the 1 state and rarely makes a transition to the 0 state.
When it goes to 0 state, it tends to return to the 1 state
more than it would stay in the 0 state. So we generate qi’s



TABLE I
THE RATIO D̄B

HEH/D̄
B
LB UNDER DIFFERENT N (pi ∈ [0.5, 0.99] AND qi ∈ [0.5, 0.99]).

N 50 60 70 80 90 100 110 120 130 140 150
Mean 1.063 1.042 1.031 1.026 1.017 1.015 1.011 1.009 1.005 1.003 1.002

Variance 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Max 1.158 1.109 1.101 1.071 1.059 1.052 1.041 1.039 1.038 1.028 1.027

TABLE II
THE RATIO D̄B

HEH/D̄
B
LB IN DIFFERENT SCENARIOS.

Scenario Mean Variance Max
N = 50, pi ∈ [0.7, 0.99], qi = 1− pi 1.013 0.000 1.084
N = 50, qi ∈ [0.7, 0.99], pi = 1− qi 1.002 0.000 1.003
N = 100, pi ∈ [0.7, 0.99], qi = 1− pi 1.004 0.000 1.042
N = 100, qi ∈ [0.7, 0.99], pi = 1− qi 1.001 0.000 1.001

and pi’s randomly following a uniform distribution from
[0.7, 0.99] and pi = 1 − qi, respectively. We consider
N = 50 and N = 100, respectively. For each N , we
simulate 100 instances (each with different pi’s and qi’s)
and also give the results of D̄B

Heh/D̄
B
LB in Table II. We

observe that the mean of D̄B
Heh/D̄

B
LB is within 1.01, the

variance is 0.00, and the maximum is 1.01.
In summary, all of our results in this section indicate that

D̄B
Heh obtained by Heh is near-optimal. Further, the lower

bound that we derived in Section III is very tight.

VI. CONCLUSIONS

In this paper, we introduced a metric called Ao2I as an
improvement of state-of-the-art metric AoII. Ao2I quantifies
the time lapse since the first time instance when stored
information has been outdated at its source. We investigated
a scheduling problem for minimizing Ao2I in an IoT data
collection network. We derived a theoretical lower bound for
the minimum Ao2I that can be used as a benchmark for
any scheduler. Then we presented Heh—a low-complexity
online scheduler to minimize Ao2I. The design of Heh was
based on the estimation of a novel offline scheduling priority
metric in the absence of knowledge of the future. Through
extensive simulations, we showed that Heh is near-optimal for
minimizing Ao2I and the lower bound is very tight.
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APPENDIX

A. Proof of Lemma 1

Proof: We prove that for any scheduler that achieves S̄,
the following must hold for its D̄B

i for each i = 1, 2, · · · , N :

D̄B
i ≥ max

{
0,

1

2
·
(

1

S̄i
− (S̄i + 2) · ri + 1

)}
. (27)

For each i = 1, 2, · · · , N , it is straightforward that D̄B
i ≥ 0.

So in this proof we focus on proving

D̄B
i ≥ 1

2
·
(

1

S̄i
− (S̄i + 2) · ri + 1

)
. (28)

Denote Mi(T ) as the total number of samples transmitted
by source i for the time horizon from time 1 to time T , i.e.,

Mi(T ) =

T∑
t=1

Si(t). (29)

Denote Ii(k) as the number of slots between the (k− 1)-th
and k-th sample transmissions from source i. After the last
sample transmission from source i, the number of remaining
slots is Ri. It is clear that for each i we have

T =

Mi(T )∑
k=1

Ii(k) +Ri. (30)

For simplicity, suppose DB
i (1) = 0 for all i. Note that

as D̄B
i is defined for T → ∞, D̄B

i does not depend on
the value of DB

i (1). By the DB
i (t) definition, from the time

which follows the (k − 1)-th sample transmission to the
time when the k-th sample is transmitted, DB

i (t) evolves as
{0, 0, · · · , 0, 1, 2, · · · }. The reason why DB

i (t) remains 0 for
certain period of time slots after transmitting the (k − 1)-
th sample is because the sample content of source i re-
mains unchanged. We denote ui(k) (1 ≤ ui(k) ≤ Ii(k))
as the number of slots when DB

i (t) = 0 after source i
transmits its (k − 1)-th sample, and hence DB

i (t) evolves
as {0, 0, · · · , 0, 1, 2, · · · , Ii(k)− ui(k)}. Similarly, we denote
ui(Mi(T ) + 1) (1 ≤ ui(Mi(T ) + 1) ≤ Ri) as the number of
slots when DB

i (t) = 0 after source i transmits the Mi(T )-th
sample. As a result, the following holds based on (30):

1
T ·

∑T
t=1 D

B
i (t) =

1
2 ·

(
Mi(T )

T · 1
Mi(T ) ·

∑Mi(T )
k=1 (Ii(k)− ui(k))

2 +

(Ri−ui(Mi(T )+1))2

T − 1
T

∑Mi(T )+1
k=1 ui(k) + 1

)
. (31)

Define the operator M̄(·) to compute the sample mean, e.g.,

M̄(Ii) =
1

Mi(T )
·
Mi(T )∑
k=1

Ii(k). (32)



Then applying Jensen’s inequality to (31) leads to

1
T ·

∑T
t=1 D

B
i (t) ≥ 1

2 ·
(

Mi(T )
T ·

(
M̄(Ii − ui)

)2
+

(Ri−ui(Mi(T )+1))2

T − 1
T

∑Mi(T )+1
k=1 ui(k) + 1

)
= 1

2 ·
(

Mi(T )
T ·

((
M̄(Ii)− M̄(ui)

)2 − M̄(ui)
)
+

(Ri−ui(Mi(T )+1))2−ui(Mi(T )+1)
T + 1

)
. (33)

Combining (30) into (32) gives

1
T ·

∑T
t=1 D

B
i (t) ≥ 1

2 ·
(

(T−Ri)
2

T ·Mi(T ) +
Mi(T )

T ·
(
M̄(ui)

)2
− 2·M̄(ui)

T · (T −Ri)− Mi(T )·M̄(ui)
T +

(Ri−ui(Mi(T )+1))2−ui(Mi(T )+1)
T + 1

)
. (34)

By minimizing the RHS of the above inequality analytically
with respect to the variable Ri, we have

1
T ·

∑T
t=1 D

B
i (t) ≥ 1

2 ·
(

T
1+Mi(T ) +

Mi(T )
T ·

((
M̄(ui)

)2 − M̄(ui)
)
− 2 · M̄(ui) +

(ui(Mi(T )+1))2−ui(Mi(T )+1)
T + 2·(M̄(ui)−ui(Mi(T )+1))

1+Mi(T ) −

Mi(T )·(M̄(ui)−ui(Mi(T )+1))2

T ·(1+Mi(T )) + 1

)
. (35)

Due to Jensen’s inequality we have

E
[

T

1 +Mi(T )

]
≥ 1

1
T + E

[
Mi(T )

T

] . (36)

Based on the definition of Mi(T ) we have

lim
T→∞

E
[
Mi(T )

T

]
= S̄i. (37)

For each k = 1, 2, · · · ,Mi(T ) + 1, we have

0 ≤ E[ui(k)] ≤ ri. (38)

The inequality in (38) holds due to the following: If source i
is in state 0 when we transmit its (k− 1)-th sample, we have:

P{ui(k) = m} = (1− pi) · pm−1
i for m ≥ 1.

Otherwise if source i is in state 1 when we transmit its (k−1)-
th sample, we have P{ui(k) = 1} = qi and

P{ui(k) = m} = (1− qi) · (1− pi) · pm−2
i for m ≥ 2.

Hence we have

E[ui(k)] ≤
∞∑

m=1

m · P{ui(k) = m} ≤ ri.

Considering that M̄(ui) ≤ maxk ui(k), we have

0 ≤ E[M̄(ui)] ≤ ri. (39)

Moreover, we have the following

lim
T→∞

E

[∑Mi(T )
k=1 ui(k)

T

]
≤ S̄i · ri, (40)

and

lim
T→∞

Mi(T ) = ∞, lim
T→∞

T · (1 +Mi(T ))

Mi(T )
= ∞. (41)

Combining (36), (37), (38), (39), (40), (41) with (35), we
can prove that (28) is true. Hence, (27) holds.

B. Proof of Lemma 3
Proof: Let us define vi(t) as the number of time slots for

DB
i (τ) = 0 since the time τ = t+ 1. In this proof, we prove

E[vi(t)|cSi (t− 1) = 0, Ri(t) = 1] =
2− pi
1− pi

− (pi+ qi); (42)

E[vi(t)|cSi (t− 1) = 1, Ri(t) = 1] = qi +
1− q2i
1− pi

. (43)

It is clear this lemma will hold if we can prove (42) and (43).
In order to prove (42) and (43), we first prove:

E[vi(t)|cSi (t− 1) = 0, DB
i (t) = 0, Ri(t) = 0] =

pi
1− pi

; (44)

E[vi(t)|cSi (t− 1) = 1, DB
i (t) = 0, Ri(t) = 0] =

1− qi
1− pi

. (45)

Consider DB
i (t) = 0 and Ri(t) = 0. In this case vi(t) = m

indicates DB
i (t + 1) = DB

i (t + 2) = · · · = DB
i (t +m) = 0

and DB
i (t+m+1) = 1, which requires cSi (t) = cSi (t+1) =

· · · = cSi (t+m− 1) = 0 and cSi (t+m) = 1.
From source i’s Markov model, if cSi (t− 1) = 0, we have

P{vi(t) = m|cSi (t− 1) = 0, DB
i (t) = 0, Ri(t) = 0}

= (1− pi) · pmi for any m ≥ 1. (46)

(44) holds directly due to (46).
From source i’s Markov model, if cSi (t− 1) = 1, we have

P{vi(t) = m|cSi (t− 1) = 1, DB
i (t) = 0, Ri(t) = 0}

= (1− qi) · (1− pi) · pm−1
i for any m ≥ 1. (47)

(45) holds directly due to (47).
Now with (44) and (45), if cSi (t− 1) = 0, we have

E[vi(t)|cSi (t− 1) = 0, Ri(t) = 1] = 1 +

E[vi(t+ 1)|cSi (t) = 0, DB
i (t+ 1) = 0, Ri(t+ 1) = 0] · pi

+E[vi(t+ 1)|cSi (t) = 1, DB
i (t+ 1) = 0, Ri(t+ 1) = 0]

·(1− pi) = 1 +
1

1− pi
− (pi + qi); (48)

Similarly, if cSi (t− 1) = 1, we can prove that

E[vi(t)|cSi (t− 1) = 1, Ri(t) = 1] = qi +
1− q2i
1− pi

, (49)

which completes the proof.
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