
Kronos: A 5G Scheduler for AoI Minimization
under Dynamic Channel Conditions

Chengzhang Li†, Yan Huang†, Yongce Chen†, Brian Jalaian‡, Y. Thomas Hou†, and Wenjing Lou†
† Virginia Polytechnic Institute and State University, Blacksburg, VA

‡ U.S. Army Research Laboratory, Adelphi, MD

Abstract—Age of information (AoI) is a powerful new metric to
quantify the freshness of information and has gained increasing
popularity in IoT applications. Existing models on AoI remain
primitive and do not consider state-of-the-art transmission tech-
nologies such as 5G. They also fail to consider the impact of
dynamic channel conditions. In this paper, we present Kronos, a
5G-compliant AoI scheduling algorithm that can cope with highly
dynamic channel conditions. Kronos is capable of performing
RB allocation and selecting MCS for each source node based on
channel conditions, with the objective of minimizing long-term
AoI. To meet the stringent real-time requirement for 5G, we
propose a GPU-based implementation of Kronos on low-cost off-
the-shelf GPUs. Through simulations and experiments, we show
that Kronos can find near-optimal AoI scheduling solutions in
sub-millisecond time scale. To the best of our knowledge, this
is the first 5G-compliant real-time AoI scheduler that can cope
with dynamic channel conditions.

I. INTRODUCTION

With the proliferation of IoT and its deployment for massive

information gathering and sharing through edge/cloud com-

puting, users are no longer satisfied with merely obtaining the

information they desire, but rather, how fresh the information

is when it is consumed. To address this trend, the concept of

“Age of Information” (AoI) was conceived in [1], [2] and has

since gained its acceptance in the research community. AoI is

defined as the elapsed time for a sample (stored at a particular

location, e.g., edge or cloud) between current time (now) and

the time when the sample was first generated (collected) at

its source. AoI measures the freshness of the sample from the

time it was initially generated, which is of greater interest from

a consumer’s perspective than merely delay (or latency) of the

sample to transit through the network. In this sense, the new

AoI concept represents a new performance metric that has

the potential to transform traditional throughput/delay-based

networking research.
There has been active research on designing scheduling

algorithms to minimize AoI [3]. However, existing research on

AoI has been largely limited to information-theoretic explo-

ration. Most notably, few existing efforts have considered the

capability of state-of-the-art transmission technologies such as

cellular (e.g., 4G LTE [4] or 5G NR [5]) or Wi-Fi (e.g., [6])

in AoI modeling and analysis. A bulk of existing research has

been concerning extremely simple toy models (see, e.g., [7]–

[9]) which are hardly applicable to real-world IoT systems.

Further, there is hardly much research on AoI scheduling

that addresses the impact of time-varying channel conditions.

In [10], [11], the authors considered time-varying channels

that only employed extremely unrealistic models (e.g., binary

channel under which one can either transmit a sample or

nothing). In [12], Lu et al. assumed channel coherence time

could last an entire frame (consisting of a large number of

time slots). But in reality, channel condition can change rapidly

(e.g., for each TTI in 5G) and hardly holds constant over an

entire frame.
In this paper, we focus on the design of a 5G-compliant

AoI scheduler and address the impact of time-varying channel

conditions. Our BS at edge IoT network is designed to

conform to the state-of-the-art transmission technology in 5G

cellular standard [5], which is what major carriers (e.g., AT&T

[13], Verizon [14]) are supporting. Further, our scheduler is

designed to cope with highly dynamic channel conditions (e.g.,

time-selective fading and frequency-selective fading), which is

a major challenge in real-world environment. Finally, we will

ensure that our AoI scheduler strictly meet the stringent timing

requirement (i.e., sub-millisecond running time for computing

scheduling solution) as specified in 5G standard.
There are a number of technical challenges in this research.

First, as we shall see in Section III, the AoI scheduling

problem in our model entails the allocation of resource blocks

(RBs) and the selection of modulation and coding scheme

(MCS) for each source node in each TTI based on channel

conditions. This presents a much larger search space for an

optimal solution than any of those problems considered to date

in the AoI literature. Second, the stringent timing requirement

for real world 5G systems (i.e., sub-millisecond time scale)

sets a hard performance measure against any new design of

an AoI scheduler. As we shall see, it is extremely challenging

to find a near-optimal solution for a problem of such size and

complexity in such a time scale.
The main contributions of this paper are the following:

• This paper studies AoI with consideration of varying

channel conditions under 5G-based IoT network. Specif-

ically, we model uplink transmission resource as grids of

RBs that span both time and frequency domains with

different channel conditions. The scheduling problem

under our model entails RB allocation to each source

node and selection of MCS by each source node based

on channel condition on each RB, with the goal of

minimizing long-term average AoI.

• Since channel conditions for the future is unknown, we

pursue the design of an online scheduling algorithm.

For performance benchmark, it is necessary to develop

a lower bound for the objective function. We propose

a novel computational procedure to find an asymptotic

lower bound for the objective. Specifically, we first relax

the original AoI minimization problem to a data rate mini-

1466

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00146

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

mization problem. Then we employ a gradient scheduling

algorithm to find an asymptotic lower bound for this

problem. The gradient scheduling minimizes an empirical

data rate for each TTI, which can be formulated as an

integer quadratic programming problem and be solved

by the CPLEX solver.

• For our AoI scheduling problem, we present Kronos, an

online algorithm that conforms to 5G transmission stan-

dard and can cope with varying channel conditions. The

essence of Kronos is to iteratively select a source node

for RB allocation until all RBs in a TTI are allocated.

We propose a novel metric that takes into consideration

of AoI outage and channel conditions for the source node.

By using this metric, we can identify the next source node

for RB allocation and determine its MCS.

• To ensure Kronos can meet the stringent timing re-

quirement in 5G, we propose to employ commercial

off-the-shelf GPUs for implementation. This approach

allows us to take advantage of the massive number

of GPU processing cores to compute and compare the

scheduling metric for all possible combinations of source

nodes and MCSs. For proof-of-concept, we successfully

implement Kronos on an Nvidia Quadro P6000 GPU

using the CUDA programming model. Through extensive

performance evaluation under various channel fading

models, we find that Kronos can achieve near-optimal

performance (when compared with our lower bound)

in sub-millisecond time scale, thus meeting 5G timing

requirement.

II. A 5G-BASED IOT ARCHITECTURE

Cloud
Cellular Base Station

Wireless Channel

IoT Source Nodes

Figure 1: System Model: N nodes collect information and

update it to a BS.

Consider a 5G cellular-based IoT network where a set N
of source nodes collect information and forward it to a base

station (BS) (see Fig. 1). At each source node, it produces

samples of information periodically (through measurement,

sensing, or information capture). Denote Ti as the sampling

period (in unit of time slots) for source node i. Due to the

heterogeneity of IoT applications, the sampling periods are

generally different among different source nodes. For source

node i, denote Li as the sample size (in bits), which is

the amount of information carried in the sample. Again, due

to heterogeneity of IoT devices, sample sizes are generally

different among different source nodes.

Once a sample is produced at a source node i, it is stored

in a local memory. To ensure the cellular BS can received the

latest sample, a source node always selects the freshest sample

(i.e., the most recently generated sample) for transmission.

Once a sample has started its transmission to the BS, it must

be transmitted in its entirety, regardless how many time slots

it may take. That is, any newly generated sample afterward

cannot preempt an ongoing transmission of an older sample.

Since the uplink transmission from IoT source nodes to the

BS follow 5G cellular technology [5], transmission resource is

organized as grids of resource blocks (RBs) that span both time

and frequency domains. In the time domain, time is equally

slotted into transmission time intervals (TTIs), while in the

frequency domain, bandwidth is equally slotted into a large

number of tiny slices, and each tiny slice over a TTI is called

an RB. That is, for each TTI, there is a large number of

RBs that can be allocated to the IoT source nodes for uplink

transmission.

Due to varying channel conditions in time (across different

TTIs, i.e., time-selective fading) and frequency (across dif-

ferent RBs, i.e., frequency-selective fading), channel feedback

from each source node is necessary for optimal scheduling of

transmission resources. Based on such feedback, scheduling

of RBs among the source nodes can be performed for each

TTI. In addition to channel variation over time and frequency,

new samples from different sources may be produced within

each TTI. So it is utmost necessary to perform scheduling for

each TTI, the smallest time resolution for 5G transmission.

Since the number of RBs within each TTI is limited, not

every sample from each source node will be transmitted to

the BS. Recall that to minimize AoI at the BS, the BS

always selects the freshest sample at a source for the next

transmission. As a result, only a fraction of samples generated

at each source node will be transmitted while the rest will be

eventually discarded at the source nodes.

At the BS, the collected information can be either processed

and stored locally (edge computing) and/or be forwarded to

a cloud, where the information can be further processed and

accessed broadly by users at any location. Since many time-

sensitive IoT applications need to access the latest sampled

information from each source, it is desirable to maintain the

freshest sample (from each source) at the edge BS. So it

is necessary to design a specialized scheduler to minimize

AoI for the maintained samples at the BS. Clearly, solving a

complex scheduling problem such as AoI minimization within

each TTI in real time is not a trivial problem. This is the focus

of this paper.

III. MODELING AND PROBLEM STATEMENT

A. AoI Notation

Recall that at each source node i, it produces a sample for

every Ti time slots (TTIs). Denote U s
i (t) as the generation

time of the most recently generated sample at source node i.

1467

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

Clearly, U s
i (t) ≤ t. Then the AoI at source node i at time t,

denoted as As
i(t), is defined as:

As
i(t) = t− U s

i (t). (1)

Since sampling at source node i has a period Ti, function

As
i(t) exhibits a zigzag shape with slope 1 and period Ti.
AoI is location dependent. The sample maintained at the

BS may be older than the freshest sample stored at the source

node. Denote UB
i (t) is the generation (”birth”) time of the

most recently received sample from source node i at the BS.

Then the AoI at the BS for source i at time slot t, denoted as

AB
i (t), is defined as

AB
i (t) = t− UB

i (t). (2)

To analyze AB
i (t), it is necessary to make a connection

between AB
i (t) (AoI at edge BS) and As

i(t) (AoI at a source

node). From source node i, for the k-th transmitted sample,

denote its beginning transmission TTI as bi(k) and ending

transmission TTI as ei(k). By the definition of U s
i (t), the

generation time of this k-th sample is U s
i

(
bi(k)

)
. After the

last unit of data of this sample is completely sent to the BS

at TTI ei(k), at the next TTI (ei(k) + 1), UB
i (t) is updated

and we have UB
i (ei(k) + 1) = U s

i

(
bi(k)

)
. By the definitions

of AB
i (t) and As

i(t), it can be shown that AoI evolution at the

BS follows the following expression:

AB
i (t+ 1) =

{
As

i

(
bi(k)

)
+ ei(k)− bi(k) + 1, if t = ei(k),

AB
i (t) + 1, otherwise.

(3)
The long term average of AB

i (t) for source node i at the BS

is defined as:

ĀB
i = lim

T→∞
1

T

T∑
t=1

AB
i (t). (4)

Denote wi as the weight of source node i. Then the weighted

sum of long term average of AB
i (t) over all source node i ∈ N ,

denoted as ĀB, is:

ĀB =
∑
i∈N

wiĀ
B
i . (5)

In this paper, we want to minimize ĀB.

B. Uplink Transmission
As shown in Fig. 1, the set N of IoT source nodes (users)

share an uplink channel to transmit to the BS. Denote B as the

set of RBs in one TTI for uplink transmission. The scheduler

at the BS must allocate this set B of RBs to a subset of source

nodes within each TTI to minimize ĀB.
Denote xb

i (t) as a binary variable indicating whether RB

b ∈ B is allocated to source node i at TTI t, i.e.,

xb
i (t) =

{
1 if RB b is allocated to node i at TTI t,

0 otherwise.

Since each RB can only be allocated to at most one source

node [5], we have:∑
i∈N

xb
i (t) ≤ 1 (b ∈ B). (6)

Besides RB allocation, for each TTI, the scheduler also

needs to choose a modulation and coding scheme (MCS)

for each source node [5]. The MCS of each source node

directly determines the modulation and coding rate – how

much information (in unit of bits) is modulated and coded

in each RB for this source node. The higher the MCS is, the

higher the modulation and coding rate is. On the other hand,

the maximum amount of information can be transmitted on

one RB also depends on the channel condition. If the channel

condition for this RB is poor and the source uses a high MCS,

information carried in the RB will not be successfully received

and decoded by the BS. Therefore, the achievable data rate

by an RB b ∈ B depends on both the MCS selected by the

scheduler as well as the channel condition for this RB.

Based on [5], there are 29 levels of MCSs for transmission.

Denote M as the set of these available MCSs (i.e., M =
{1, 2, ...29}), where we assume m = 1 corresponds to the

lowest MCS and m = 29 corresponds to the highest MCS.

Denote qbi (t) as the maximum MCS that can be used for RB

b ∈ B with respect to source node i so that information carried

in RB can be successfully received by the BS. We have:

1 ≤ qbi (t) ≤ |M|.
In practice, qbi (t) is determined by the channel quality indicator

(CQI) report carried in the feedback from source node i at TTI

(t− 1). Denote cm as the modulation and coding rate for an

RB under MCS m and rb,mi (t) as the achievable data rate by

RB b w.r.t. source node i under MCS m. If m ≤ qbi (t), the

transmission is successful and the achievable data rate is cm.

Otherwise, i.e., m > qbi (t), the transmission is unsuccessful

the achievable data rate is 0. We have:

rb,mi (t) =

{
cm if m ≤ qbi (t),

0 otherwise.
(7)

Note that although each RB can only be allocated to at

most one source node within a TTI, a source node may be

allocated with multiple RBs. For a source node allocated with

multiple RBs, it must choose and use one MCS m ∈ M for

all its RBs [5]. Denote ymi (t) as a binary variable indicating

whether MCS m ∈ M is chosen to source node i at TTI t,
i.e.,

ymi (t) =

{
1 if MCS m is chosen for source i at TTI t,

0 otherwise,

and ∑
m∈M

ymi (t) ≤ 1 (i ∈ N). (8)

Denote Ri(t) as the amount of information transmitted by

source node i at TTI t across all RBs allocated to it. We have

Ri(t) =
∑
b∈B

∑
m∈M

xb
i (t)y

m
i (t)rb,mi (t) (i ∈ N). (9)

Based on (7) and (8), there is a clear trade-off between the

choice of m and number of RBs allocated to source node i
that can contribute to Ri(t), due to the differences in channel

1468

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

conditions on each RB allocated to the same source node. That

is, the higher the MCS m is chosen, the fewer number of RBs

can help contribute to Ri(t). In Fig. 2, we use an example

to show the trade-off. For a source node, suppose there are 4

RBs, and the channel conditions on the 4 RBs are respectively

2, 4, 3 and 4. If we choose MCS 4 for transmission, RB 2 and

4 can contribute to Ri(t) and the total data rate is 2× 4 = 8.

If we choose MCS 3 for transmission, RB 2, 3 and 4 can

contribute to Ri(t) and the total data rate is 3× 3 = 9. Here

when we want to maximize the data rate for the source node,

we should choose MCS 3. From the example we can see that

judicious choice of MCS is necessary to balance the achievable

bit rates from each RB and the number of RBs that can actually

contribute to achievable bit rates.

0
1
2
3
4

RB1 RB2 RB3 RB4

Channel
Condition

0
1
2
3
4

RB1 RB2 RB3 RB4

Data Rate

0
1
2
3
4

RB1 RB2 RB3 RB4

Data Rate

Choose MCS 4

Choose MCS 3

Total data rate: 2*4=8

Total data rate: 3*3=9

Figure 2: An example for MCS choosing

C. Problem Statement

In this paper, we want to design a scheduling algorithm to

minimize the long term average AoI at the BS, i.e., ĀB. The

scheduling algorithm needs to allocate |B| RBs to |N | source

nodes, and choose the MCS for each source node in each TTI.

That is, to determine the decision variables xb
i (t) and ymi (t)

for each TTI so that ĀB is minimized.

There are a number of challenges associated with this

problem. First, the search space of the scheduling problem

is enormous. Within each TTI, the BS needs to allocate |B|
RBs (e.g., 100) among |N | source nodes (e.g., 100), and assign

each source node an optimal MCS (among 29 possible levels).

The solution space consists of |N ||B| · |M||N | possibilities.

None of the existing AoI research (see [3]) has studied

problems of such size and complexity. Second, this is an online

algorithm. A scheduler can only makes a scheduling decision

for the next TTI and does not have any knowledge of channel

conditions for future TTIs. Since we are minimizing a long

term average AoI, it is not possible for a schedule to make an

optimal decision without knowledge of the future. Therefore,

we can only design a near-optimal scheduler at best. Finally,

the timing requirement of our scheduling solution is critical.

Our scheduler must make its scheduling decision in each TTI,

which is typically in sub-millisecond time scale under 5G [5].

It is extremely challenging to find a near-optimal solution for

problem of such size and complexity in such a time scale.

To date, none of existing AoI research has considered such

timing requirement in the design of a scheduling solution (see

the webpage [3]).

IV. PERFORMANCE BOUND

Given that it is impossible to find an optimal online schedul-

ing algorithm, it is therefore important to develop a lower

bound for the objective ĀB. This lower bound (if tight) can

be used as a benchmark to measure the performance of a

scheduling algorithm that we will design later in Section V.

In this section, we develop a novel computational procedure

that can be used to find a tight lower bound for ĀB. Denote

Ri as the long term average data rate for source node i ∈ N ,

i.e.,

Ri = lim
T→∞

1

T

T∑
t=1

Ri(t). (10)

In Section IV-A, we develop a lower bound for ĀB under

all possible scheduling algorithms that offer the same Ri (for

all i ∈ N), where we assume Ri’s are given a priori. In

Section IV-B, we remove this assumption (i.e., knowledge of

Ri’s) by offering a computational procedure and find a lower

bound for ĀB.

A. A Lower Bound Assuming Explicit Knowledge of Ri

When Ri’s are given, there may exist multiple different

scheduling algorithms. We consider the following question:

Under the given Ri’s, how do we find a scheduling algorithm

with the minimum ĀB?

Note that in (5), ĀB is a weighted sum of all ĀB
i ’s. A

lower bound of ĀB under the given Ri’s can be found by

the following relaxation. If we can find a lower bound for

each ĀB
i (for i ∈ N) under the given Ri independent of the

other ĀB
j ’s or Rj’s (for j �= i), then we can use the weight of

each ĀB
i to sum them up and this is clearly a lower bound of

ĀB.

We now show how to find a lower bound for ĀB
i under

a given Ri independent of other Rj (for j �= i). For ease

of exposition, denote pi as the fraction (in percentage) of

successfully transmitted samples over all generated samples

in the long term. Clearly, pi ≤ 1. With pi, we can rewrite Ri

as:

Ri =
piLi

Ti
. (11)

Note that Ri is proportional to pi via a constant factor.

Therefore, minimizing ĀB
i under a given Ri is equivalent to

minimizing ĀB
i under a given pi.

Since we want to find a lower bound for ĀB
i under a given

pi, let us consider the following fictitious scenario. Instead of

updating AB
i (t) at the end of TTI ei(k), let’s make a fictitious

update at the end of TTI bi(k). Clearly, ĀB
i at the BS under

such a fictitious updating mechanism is a smaller than that

when the update is made at the end of TTI ei(k) (since the

update is performed earlier than it should be). Therefore, we

will use ĀB
i obtained under such a fictitious update mechanism

as a lower bound.

Ideally, to minimize this new lower bound of ĀB
i under a

given pi, we would like to have each of those samples that are

eventually transmitted be transmitted immediately after they

1469

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

are generated. Clearly, such a hypothesized (ideal) scheduler

would offer a new lower bound for ĀB
i under a given pi.

Denote TU
i (k) as the k-th update interval between the k-th

and (k + 1)-th samples that are transmitted by source node i
to the BS, i.e.,

TU
i (k) = bi(k + 1)− bi(k). (12)

Then, under a hypothesized scheduler, TU
i (k) is an integral

number of the sampling period Ti. Clearly, such a hypothe-

sized scheduler is not unique and many (each with different

behavior of TU
i (k)’s) may offer the same pi. Among this group

of hypothesized schedulers, we want to identify a scheduler

that minimizes ĀB
i . The following lemma identifies such a

scheduler.

Lemma 1 Within the class of hypothesized schedulers that
provide a lower bound for ĀB

i for a given pi, define hi as:

hi = � 1
pi
�, (13)

where �·� is the floor function. Denote AUS as the almost-
uniform scheduler that performs updates with:

TU
i (k) =

{
hiTi with a percentage of (hi + 1− 1

pi
),

(hi + 1)Ti with a percentage of (1
pi
− hi).

Then AUS minimizes ĀB
i within the given class of hypothesized

schedulers and

ĀB
i =

Ti

2
f(pi) +

1

2
, (14)

where

f(pi) = 2� 1
pi
�+ 1− (� 1

pi
�2 + � 1

pi
�) · pi. (15)

This lemma says the hypothesized scheduler that employs

almost uniform (or exactly uniform in the case when 1/pi is

an integer) update interval minimizes ĀB
i . This result is very

intuitive. It can be shown (as in the proof sketch below) that

for any other scheduler with a larger variance in TU
i (k), we

can always find a scheduler with a smaller variance in TU
i (k)

that reduces ĀB
i .

A Sketch of Proof For any scheduler, if there are two update

intervals with length n1Ti and n2Ti such that n1 ≥ n2+2, then

we can construct a new hypothesized scheduler by changing

the intervals to (n1−1)Ti and (n2+1)Ti, and its ĀB
i is smaller

than the original one. By repeatedly doing so we can construct

a new hypothesized scheduler, a.k.a. AUS, where the length

difference between any two update intervals isn’t greater than

Ti. In other words, there exists an integer hi such that for all

k, TU
i (k) is either hiTi or (hi + 1)Ti.

Considering the fact that the sample rate is pi, we have

hi = � 1
pi
�. Denote a as the percentage of those intervals with

length nTi, then (1 − a) is the percentage of those intervals

with length (n + 1)Ti. During a long time interval T → ∞,

the sample rate is pi, and the occurrence rates (the number of

occurrences over the number of TTIs in long term) of those

two kinds of interval are respectively pia
Ti

and
pi(1−a)

Ti
. We

have

lim
T→∞

T
pia

Ti
hiTi + T

pi(1− a)

Ti
(hi + 1)Ti = T.

That means

hia+ (hi + 1)(1− a) =
1

pi
. (16)

Then we have

a = hi + 1− 1

pi
. (17)

Then we can calculate ĀB
i under AUS:

ĀB
i =

ahiTi(1 + hiTi) + (1− a)(hi + 1)Ti(1 + (hi + 1)Ti)

2 · (ahiTi + (1− a)(hi + 1)Ti)

=
Ti

2
(2hi + 1− (h2

i + hi)pi) +
1

2

=
Ti

2
f(pi) +

1

2
.

Combining (5), (11) and (14), we have the following lower

bound for ĀB as a functions of Ri:

ĀB ≥
∑
i∈N

wi · (Ti

2
f(

RiTi

Li
) +

1

2
). (18)

In the next subsection, we will remove the assumption of

prior knowledge of Ri.

B. Finding A Lower Bound of ĀB

Based on (18), a lower bound of ĀB can be found by

minimizing the RHS of (18), i.e.,

min
xb
i (t),y

m
i (t)

∑
i∈N

wi(
Ti

2
f(

RiTi

Li
) +

1

2
)

s.t. Constraints (6), (7), (8), (9), (10).

(19)

For ease of exposition, we define

Ji(Ri) = wi(
Ti

2
f(

RiTi

Li
) +

1

2
). (20)

Then (19) becomes:

min
xb
i (t),y

m
i (t)

∑
i∈N

Ji(Ri)

s.t. Constraints (6), (7), (8), (9), (10).

(21)

We will design an optimal scheduling algorithm to problem

(21). Then we can substitute the optimal result for Ri into

(19) and obtain the lower bound.

Problem (21) is a scheduling problem to minimize a

function of Ri. Similar problems have been studied in the

information theory community (see, e.g., [15], [16]), where

it has been shown that a gradient scheduling algorithm can

achieve the same optimal objective value asymptotically (when

the number of TTIs goes to infinity). Specifically, in a gradient

scheduling algorithm, we define an empirical data rate Re
i (t)

for each TTI t and it is updated as a moving average as

follows:

Re
i (t+ 1) = (1− β)Re

i (t) + βRi(t), (22)

1470

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

where β is a small positive constant (e.g., 0.01) and Ri(t) is

the instant data rate at TTI t. It can be easily shown that under

the moving average updating algorithm in (22), when β → 0,

lim
t→∞Re

i (t) = Ri (23)

That is, Re
i (t) asymptotically approaches Ri when t → ∞.

In practice, t does not need to be very large to achieve this

approximation. In our simulation results, we find that t = 500
is sufficient to achieve a good approximation.

Based on (23), (21) becomes

min
xb
i (t),y

m
i (t)

lim
t→∞

∑
i∈N

Ji
(
Re

i (t)
)

s.t. Constraints (6), (7), (8), (9), (22).

(24)

The idea of the gradient scheduling algorithm is to

minimize
∑

i∈N Ji
(
Re

i (t + 1)
)

at every t. It can be

shown that by performing such minimization for every TTI,

lim
t→∞

∑
i∈N Ji

(
Re

i (t)
)

is also minimized when β → 0 [15],

[16].

We now show how to minimize
∑

i∈N Ji
(
Re

i (t+1)
)

at TTI

t. When β → 0, considering (22), we have∑
i∈N

Ji
(
Re

i (t+ 1)
)
=

∑
i∈N

Ji
(
(1− β)Re

i (t) + βRi(t)
)

=
∑
i∈N

Ji

(
Re

i (t) + β
(
Ri(t)−Re

i (t)
))

=
∑
i∈N

Ji
(
Re

i (t)
)
+

∑
i∈N

dJi(R)

dR

∣∣∣
R=Re

i (t)
β
(
Ri(t)−Re

i (t)
)
,

(25)

where the last equality follows from the definition of derivative

for Ji(·). Since Re
i (t) can be computed at TTI t, J(Re

i (t))

and
dJi(R)
dR

∣∣∣
R=Re

i (t)
Re

i (t) can also be computed. Therefore, to

minimize
∑

i∈N Ji(R
e
i (t+1)) at TTI t, we only need to solve

the following problem.

min
xb
i (t),y

m
i (t)

∑
i∈N

dJi(R)

dR

∣∣∣
R=Re

i (t)
Ri(t)

s.t. Constraints (6), (7), (8), (9), (27),

(26)

where the derivative of Ji(·) is computed as

dJi(R)

dR

∣∣∣
R=Re

i (t)
=
wiTi

2

df(RTi

Li
)

dR

∣∣∣
R=Re

i (t)

=
wiT

2
i

2Li

(� Li

Re
i (t)Ti

�2 + � Li

Re
i (t)Ti

�). (27)

To ensure f(·) is continuously differentiable at every point,

we need to define how to perform derivative at certain points.

Recall f(·) is a piecewise linear function. When Li

Re
i (t)Ti

is

exactly an integer, the function f(RTi

Li
) is continuous but not

differentiable at R = Re
i (t) (i.e., the left derivative doesn’t

equal to the right derivative). For these points, we use the left

derivative as the derivative at R = Re
i (t), as shown in the

RHS of (27).

Since each term in the RHS of (27) is either a constant or a

known value at TTI t, let’s denote the RHS of (27) as Wi(t).
Using (9), the minimization problem (26) can be written as

min
xb
i (t),y

m
i (t)

∑
i∈N

∑
b∈B

∑
m∈M

Wi(t)r
b,m
i (t)xb

i (t)y
m
i (t)

s.t. Constraints (6), (7), (8).

(28)

The optimization problem (28) is an integer quadratic pro-

gramming (IQP) problem, which can be solved by commercial

optimizers such as the IBM CPLEX [17]. Solving the problem

in CPLEX is time-costing and will solely be used for offline

benchmark purpose.

Recall that after solving the optimization problem (28) for

sufficient number of TTIs (e.g., 500 TTIs in our simulations),

we let Ri = Re
i (t) and substitute Ri into (19) to get the lower

bound.

V. KRONOS: DESIGN AND IMPLEMENTATION OF A

REAL-TIME SCHEDULER

In this section, we develop a scheduling algorithm, code

named Kronos1, to achieve near-optimal performance for the

AoI scheduling problem in real time.

A. Basic Idea

The design of Kronos is based on the following key ideas.

1) For the objective function in (5), it is obvious that we

need to minimize ĀB
i from each source node i ∈ N . For

AB
i , its value at the BS is not reduced until a new sample

is received by the BS in its entirety. That is, a partially

transmitted sample will not reduce (update) AB
i at the

BS. Based on this observation, we should minimize the

number of partially (incomplete) transmission of sam-

ples at the end of each TTI. As an extreme, we can limit

the number of samples that are partially (incompletely)

transmitted at the end of a TTI to no more than one. This

can be done by devoting all the remaining RBs to one

sample, rather than spreading out to multiple samples.

2) Following the last idea, at the beginning of a new

(the next) TTI, we can inherit at most one partially

(incomplete) transmission of a sample from the previous

TTI. Recall that we cannot preempt a sample once it

starts transmission, even if there is a newly generated

sample from the same source node. Further, for our IoT

applications, a sample size is relatively small. So the

remaining portion of the partially transmitted sample is

not large (in most cases) and it makes sense to complete

its transmission before starting to transmit any other

samples.

3) After we complete transmission of the remaining (in-

complete) sample (carried from the last TTI), we need

to decide which sample to transmit next in the current

TTI. To do this, we need a metric to compare among the

samples from different source nodes and decide which

sub-set of samples that we will allocate the remaining

1Kronos is the god of time in Greek mythology.

1471

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

RBs. Clearly, this metric should consist of the weight

and the ”outage” (difference between AoI at the BS

and the source, i.e., AB
i (t) − As

i(t)) for each source

node i ∈ N . In our previous work [18], in the absence

of considering channel conditions, we use the metric

wiΔ
2
i (t) for scheduling, where Δi(t) is defined as

Δi(t) = AB
i (t)−As

i(t). (29)

It was shown in [18] that a scheduler based on this met-

ric can offer near-optimal performance (under simplified

channel conditions). Therefore, it would be wise to have

Kronos to inherit this basic trait before we add additional

features to cope with dynamic channel conditions.

4) To incorporate channel conditions into the scheduling

decision metric, we must consider the impact of MCS

setting on RBs. As shown in the example in Fig. 2,

the higher the MCS m is chosen, the fewer number of

RBs (with a higher rate) can be used for transmission.

Intuitively, we prefer to use as few RBs as possible

to transmit a sample. Therefore, the scheduling metric

should also include the number of RBs required to

transmit a sample, i.e., the more RBs required, the

lower the priority (or smaller the metric) associated with

a source node. We will elaborate the details of how

to incorporating channel conditions into the scheduling

metric in the next section.

5) With the scheduling metric (see next section), we can

compare samples and perform scheduling, i.e. RB al-

location. Clearly, RB allocation is an iterative process,

where in each iteration, we will consider how to allocate

a subset of RBs among the remaining unallocated RBs

to a sample in the remaining unscheduled samples.

Eventually (after a number of iterations), all RBs are

allocated and the algorithm terminates.

B. Algorithm Details: Incorporating Channel Condition in
Scheduling Metric

We devote this section to the discussion of how channel

conditions are incorporated into the scheduling metric, which

is the heart of our design.

Recall that the choice of MCS value m at a source node

will set the corresponding coding rate cm, which will in turn

determine two parameters:

• the set of RBs in the remaining un-allocated RBs that can

contribute at this bit rate cm. We denote the number in

this set as nm
i (t).

• the number of RBs that is needed to transmit a sample

for source node i, which we denote as smi .

That is,

nm
i (t) =

∑
un-allocated b

[qbi (t) ≥ m], (30)

where qbi (t) (see Section III) is the maximum MCS that can

be used for RB b and source node i for transmission (which

is determined by the channel condition on RB b), and “[·]”

is the notation for Iverson bracket, returning 1 if the inside

statement is true and 0 otherwise [19]. And we have

smi =
 Li

cm
�, (31)

where “
·�” is the ceiling function.

Clearly, the scheduling metric for a sample is dependent on

m and is a function of nm
i (t), and smi , in addition to wiΔ

2(t)
(as discussed in the last section). As a start, denote V m

i (t)
as the scheduling metric under MCS m with the following

general form:

V m
i (t) = g(wiΔ

2
i (t), n

m
i (t), smi), (32)

where “g” is a function of wiΔ
2(t), nm

i (t) and smi .

For each sample from source node i ∈ N , we have the

pair (nm
i (t), smi) for each m ∈ M. If nm

i (t) ≥ smi , it means

that this sample can possibly be transmitted in its entirety in

this TTI. Otherwise (i.e., nm
i (t) < smi), this sample can only

be partially transmitted even if we allocate all the remaining

RBs to it. Now we have a dilemma: shall we transmit a partial

sample (while holding back one or more other samples that can

otherwise be transmitted in their entirety) or shall we transmit

one or more complete samples first?

Since our goal is to minimize (5), based on the the

shortest-job-first principle in queuing theory [20], we should

first schedule one or more samples that can be fully

transmitted. Therefore, we purposely design the function

g(wiΔ
2
i (t), n

m
i (t), smi) > 0 when nm

i (t) ≥ smi and

g(wiΔ
2
i (t), n

m
i (t), smi) < 0 when nm

i (t) < smi . Under

such definition, the priority for a sample that can be fully

transmitted within this TTI is always higher than that for a

sample that can only be transmitted partially. After RBs have

been allocated to those samples that can be fully transmitted,

we move on to consider how to allocate the remaining RBs to

those samples that cannot be fully transmitted (i.e., samples

with V m
i (t) < 0). Recall that in each TTI we only schedule

at most one partially transmitted sample. So when V m
i (t) < 0

for all remaining source nodes i and MCS m, we will choose

one with the largest value of V m
i (t) < 0 for transmission.

Based on the above discussion, we now show how to design

function g(wiΔ
2
i (t), n

m
i (t), smi) as follows.

• When nm
i (t) ≥ smi , sample i can be fully transmitted

with un-allocated RBs under MCS m in this TTI. In

this case, the fewer RBs required for transmission (i.e.,

smi), the higher the priority it should have. Therefore, we

define function g as

g(wiΔ
2
i (t), n

m
i (t), smi) = wiΔ

2
i (t) ·

1

smi
. (33)

• When nm
i (t) < smi , sample i cannot be fully trans-

mitted under MCS m. In this case, the greater the

fraction of the sample that can be transmitted (i.e.,

nm
i (t)/smi), the higher the priority it should have. Based

on this idea, the function g should be proportional to

the term nm
i (t)/smi . On the other hand, as discussed

earlier, g(wiΔ
2
i (t), n

m
i (t), smi) should be negative when

1472

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

nm
i (t) < smi . To ensure this is the case, we can add a

negative offset constant and define function g as

g(wiΔ
2
i (t), n

m
i (t), smi) = wiΔ

2
i (t) ·

nm
i (t)

smi
− C, (34)

where C is a large (offset) constant that can ensure

g(nm
i (t), smi) < 0 for all i and m when nm

i (t) < smi .

For example, we can set C =
∑

i∈N wiΔ
2
i (t) or C =

maxi∈N wiΔ
2
i (t).

Combining (32), (33) and (34), the scheduling metric V m
i (t)

is given as

V m
i (t) =

⎧⎨
⎩

wiΔ
2
i (t)

smi
, if nm

i (t) ≥ smi ,
wiΔ

2
i (t)n

m
i (t)

smi
− C, otherwise.

(35)

In summary, within each TTI, Kronos first allocates RBs to

complete transmission of the incomplete sample from the last

TTI. Then Kronos selects samples (one at a time) iteratively

for RB allocation. In each iteration, Kronos finds nm
i (t) by

(30) and computes V m
i (t) for all i ∈ N and m ∈M by (35).

Then Kronos chooses i∗ and m∗ with the largest V m∗
i∗ (t).

If V m∗
i∗ (t) > 0, Kronos allocated RBs for the entire sample

transmission with MCS m∗ and then moves on to the next

iteration; if V m∗
i∗ (t) < 0, Kronos allocated all remaining RBs

for the sample with MCS m∗ and terminates afterwards.

We now discuss the complexity of Kronos. To allocate RBs

to complete transmission of the incomplete sample from the

last TTI, the time complexity is O(|B||M|). After that, if

Kronos is implemented sequentially, then in each iteration,

Kronos needs to compute |N ||M| different V m
i (t)’s, which

has a time complexity O(|N ||M||B|). After that, Kronos

selects i∗ and m∗ with the largest V m∗
i∗ (t), which has a

time complexity O(|N ||M|). Then Kronos allocates RBs to

the selected source node i∗, which has a time complexity

O(|B|). Therefore, the time complexity for each iteration is

O(|N ||M||B|) + O(|N ||M|) + O(|B|) = O(|N ||M||B|).
Since there are at most |N | iterations in each TTI, the time

complexity for scheduling new samples is O(|N |2|M||B|).
Thus, the total time complexity in each TTI is O(|B||M|) +
O(|N |2|M||B|) = O(|N |2|M||B|).

In one of our simulations in Section VI, we find that when

|N | = 100, |B| = 100 and |M| = 29, the average running

time for sequential Kronos is about ∼10 ms, which can’t meet

the 5G timing requirement (sub-millisecond time scale). In

the next section, we will incorporate parallel computation into

Kronos implementation to speed up its timing performance.

C. Algorithm Speedup: A GPU-based Implementation

We observe that in each iteration of Kronos, the computation

of V m
i (t)’s for each i and m is independent from each

other. This hints that we could compute them in parallel

rather than in sequence. A low-cost, off-the-shelf solution

to compute V m
i (t)’s in parallel is to employ GPU. Today’s

commercial GPUs typically consist of a large number (1000s)

of processing cores and are highly optimized for massive

parallel computation. However, unlike a CPU core, each GPU

core processor has very limited computational capability and

is designed to handle very simple computations (and thus has

low cost). To best utilize a GPU’s capability, it is utmost

important to ensure that each sub-problem handled by a GPU

core processing is of extremely low complexity and requires

very few iterations to find a solution. To calculate V m
i (t)’s for

all i’s and m’s in an iteration, we can decompose this problem

into |N ||M| independent sub-problems, each of which is to

calculate V m
i (t) under a specific value of i and m. Recall

that computational complexity of this sub-problem is O(|B|),
which can be done quickly by GPU cores.

In our implementation, we employ an off-the-shelf Nvidia

Quadro P6000 GPU and the CUDA programming platform.

This GPU consists of 30 streaming multi-processors (SMs),

with each SM consisting of 128 small processing cores (CUDA

cores). These cores are capable of performing concurrent

computation tasks involving arithmetic and logic operations.

Under CUDA, the sub-tasks to compute V m
i (t)’s are handled

by a grid of thread blocks, each with a certain number of

threads. We limit each SM to handle at most one thread block

to avoid sequential execution of thread blocks on the same SM.

Specifically, with |M| = 29 (under 5G standard [5]), we use

29 SMs and assign each SM to a specific value m, each with

|N | sub-tasks. Then within each SM, |N | sub-tasks are being

solved in parallel threads. Since we are not able to synchronize

different thread blocks among the SMs within the GPU under

CUDA, we rely on the CPU to perform synchronization after

all V m
i (t)’s have been computed.

After computing V m
i (t)’s, we need to choose i∗ and m∗

corresponding to the largest V m∗
i∗ (t). We can use parallel

reduction [21] to reduce the complexity. For example, when

|N ||M| is a power of 2, we can construct an elimination

tournament, where only a half of V m
i (t)’s survive after each

round. After log2(|N ||M|) rounds, the champion (with the

largest V m
i (t) among all |N ||M| V m

i (t)’s) will be found.

This parallel reduction procedure significantly reduces the time

complexity (compared with sequentially search) from |N ||M|
to log2(|N ||M|). When |N ||M| is not a power of 2, we can

add fictitious elements in the beginning to increase the number

of elements to a power of 2 and then use parallel reduction to

find the champion.

With GPU implementation, in each iteration, the com-

putation complexity of V m
i (t)’s is O(|B|). The complexity

of choosing the largest V m
i (t) (with parallel reduction) is

O
(
log(|N ||M|)). The computation complexity of RB allocat-

ing remains O(|B|). Therefore, the time complexity of each

iteration is O(|B|) + O
(
log(|N ||M|)). Recall there are at

most |N | iterations and the complexity of completing the

unfinished sample from the last TTI is O(|B||M|). Then the

total computation complexity in each TTI is O(|B||N |) +
O
(
log(|N ||M|))×|N |+O(|B||M|) = O

(|B|·(|N |+|M|))+
O
(|N | · (log |N | + log |M|)). In one of our simulations in

Section VI, we find that when |N | = 100, |B| = 100 and

|M| = 29, the average running time for Kronos implemented

with GPU is about ∼0.4 ms, which decreases one order of

magnitude compared with implementation without GPU.

1473

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

Table I: Simulation Parameters
Type wi Li (bits) Ti (TTIs) Expected power (MCS)

1 8 5400 2 26
2 2 7200 5 28
3 10 6800 3 24
4 6 6200 6 23
5 5 7600 1 20
6 2 8200 11 22
7 9 6000 4 25
8 1 7100 5 18
9 4 9600 6 24

10 3 8400 3 21

VI. PERFORMANCE EVALUATION

The objective of this section is twofold. First, we will

evaluate Kronos in terms of its ability to achieve our objective

function. The primary benchmark for this purpose is the lower

bound that we developed in Section IV. Second, we will

examine the timing performance of Kronos and see if it can

meet the real time requirement under 5G.

A. Network Setting

We assume there are 10 different types of IoT source nodes.

The weight, sample size, and sampling period for each type

of nodes are given in Table I. We consider 100 source nodes

(10 from each type), i.e., |N | = 100. For ease of presentation,

we normalize the weight of each source node w.r.t.
∑

i∈N wi.

We assume the uplink transmission consists of 100 RBs, i.e.,

|B| = 100.

Although any setting of channel condition for each source

node can be used, for ease of reproducibility, we pre-assign

an expected channel condition (in terms of the corresponding

MCS of the expected power) for each type of source nodes, as

shown in Table I. Note that the pre-assigned channel condition

is statistical and in each TTI the channel is randomly generated

(i.e., time-varying channel).

For each MCS m, we get the corresponding modulation and

coding rate cm from [5] (Table 5.1.3.1-1).

In each network setting, we run simulations for Kronos

over 500 TTIs and then calculate the average AoI ĀB. For

initialization, As
i(0) for each i is set to a random number. For

comparison, we simulate Kronos algorithm with and without

GPU implementation. Our GPU implementation is done on a

Dell Precision Tower 7910 with an Intel Xeon E5-2687W v4

CPU (3.0 GHz) and an Nvidia Quadro P6000 GPU. All the

programmings are done in Microsoft Visual Studio 2017. We

use CUDA 10.0 to program Kronos in our GPU.

B. Results

Varying Channel Propagation. We first evaluate Kronos

under channels with different LOS signal strength. We assume

Rician fading channel with no frequency nor time correlation.

Fig. 3 shows the evolution of ĀB under Kronos across

500 TTIs for different Rician factor K. In terms of objective

value, there is no difference in Kronos implementation with

and without GPU. Also shown in each sub-figure is the lower

bound by the gradient scheduling algorithm (with β = 0.01).

Clearly, we see Kronos can achieve near-optimal performance.

In particular, when Rician factor K = 0 (i.e., Rayleigh fading),

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(a) K = 0

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(b) K = 2

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(c) K = 10

Figure 3: ĀB under different Rician factors.

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(a) K = 0

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(b) K = 2

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(c) K = 10

Figure 4: Running time under different Rician factors.

2 and 10, the objectives of Kronos are 20.8%, 15.0% and 7.7%

within their respective lower bounds.

Fig. 4 shows the running time for Kronos in each TTI with

and without GPU implementation. As a benchmark, we also

show the 5G timing requirement for numerology 0 (1 ms) in

each sub-figure. We can see under all K, the running time of

Kronos falls below 1 ms when it is implemented with GPU.

When it is implemented only with CPU, it is about ∼10 ms.

In particular, when K = 0, 2 and 10, the average running

times of Kronos (with GPU implementation) are 402 μs, 396

μs and 384 μs respectively.

Varying Frequency Correlation. We now evaluate Kronos

under channels with different frequency correlation. We as-

sume Rayleigh fading channels with no time correlation, and

the coherence bandwidth is Bc, i.e., the channel conditions on

adjacent Bc RBs are identical for each source node.

Fig. 5 shows evolution of ĀB under Kronos across 500 TTIs

for different coherence bandwidth Bc. Also shown in each sub-

figure is the lower bound by the gradient scheduling algorithm.

Clearly, we see Kronos can achieve near-optimal performance.

In particular, when Bc = 1 (i.e, no frequency correlation),

4 and 10, the objectives of Kronos are respectively 20.8%,

17.7% and 15.8% within their respective lower bounds.

Fig. 6 shows the running time for Kronos in each TTI

with and without GPU implementation. We can see under

all Bc, the running time of Kronos falls below 1 ms when

it is implemented with GPU. When it is implemented only

with CPU, it is about ∼10 ms. In particular, when Bc = 1,

4 and 10, the average running times of Kronos (with GPU

implementation) are respectively 402 μs, 392 μs and 377 μs.

Varying Time Correlation. Finally, we evaluate Kronos

under channels with different time correlation. We assume

Rayleigh fading channels with no frequency correlation, and

the coherence bandwidth is Tc, i.e., the channel conditions on

adjacent Tc TTIs are identical for each source node.

Fig. 7 shows evolution of ĀB under Kronos across 500 TTIs

for different coherence bandwidth Tc. Also shown in each sub-

figure is the lower bound by the gradient scheduling algorithm.

Clearly, we see Kronos can achieve near-optimal performance.

In particular, when Tc = 1 (i.e, no time correlation), 2 and 5,

1474

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(a) Bc = 1

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(b) Bc = 4

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(c) Bc = 10

Figure 5: ĀB under different coherence bandwidth.

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(a) Bc = 1

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(b) Bc = 4

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(c) Bc = 10

Figure 6: Running time under different coherence bandwidth.

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(a) Tc = 1

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(b) Tc = 2

0 100 200 300 400 500
t (TTI)

0

1

2

3

4

5

6

Ā
B

Kronos
Lower Bound

(c) Tc = 5

Figure 7: ĀB under different coherence time.

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(a) Tc = 1

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(b) Tc = 2

100 200 300 400 500
t (TTI)

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(μ

s)

 Kronos without GPU

 Kronos with GPU

1 ms

(c) Tc = 5

Figure 8: Running time under different coherence time.

the objectives of Kronos are respectively 20.8%, 20.6% and

21.0% within their respective lower bounds.

Fig. 8 shows the running time for Kronos in each TTI

with and without GPU implementation. We can see under

all Tc, the running time of Kronos falls below 1 ms when

it is implemented with GPU. When it is implemented only

with CPU, it is about ∼10 ms. In particular, when Tc = 1,

2 and 5, the average running times of Kronos (with GPU

implementation) are respectively 402 μs, 402 μs and 408 μs.

We also tested the performance of Kronos under many

other different settings, including varying |N |, |B|, Li’s and

Ti’s. Under all settings we tested, Kronos can achieve near

optimal AoI performance, and the running time (with GPU

implementation) is below 1 ms. Due to paper length limitation

we don’t show the results.

VII. CONCLUSIONS

This paper presents the first successful design of a 5G-

compliant real-time AoI scheduler, Kronos, which can cope

with dynamic channel conditions. Kronos is capable of per-

forming RB allocation and MCS selection for each source

node based on channel conditions within each TTI. To cope

with the enormous search space for optimal solution and the

unknown nature of channel conditions, we developed a novel

computation procedure to find an asymptotic lower bound

for the objective as a performance benchmark. We further

developed a novel metric that can be used by Kronos to select

the next source node to allocate RBs and determine MCS

in each iteration. To meet the stringent timing requirement

in 5G, we proposed to implement Kronos on a low cost

GPU platform by exploiting its massive parallel computing

capability. Through extensive simulations and experiments,

we show that Kronos can find a near-optimal AoI scheduling

solution in sub-millisecond time scale.

ACKNOWLEDGMENTS

This research was supported in part by US Army

Research Laboratory under Cooperative Agreement No.

W911NF1820293. The work of W. Lou and Y.T. Hou was

also supported in part by NSF under Grant CNS-1800650.

REFERENCES

[1] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing Age of
Information in Vehicular Networks,” in Proc. IEEE SECON, 2011.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-Time Status: How Often
Should One Update?” in Proc. IEEE INFOCOM, 2012.

[3] Y. Sun, “A Collection of Recent Papers on the Age of Information,”
available at http://www.auburn.edu/\%7eyzs0078

[4] 3GPP TR 21.101 version 7.0.0, “Physical Layer Aspects for Evolved
UTRA.”

[5] 3GPP TS 38.214 version 15.0.0, “NR; Physical layer procedures for
data.”

[6] IEEE P802.11ac. Specification framework for TGac. IEEE 802.11-
09/0992r21.

[7] R.D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-Optimal Con-
strained Cache Updating,” in Proc. IEEE ISIT, 2017.

[8] C. Joo and A. Eryilmaz, “Wireless Scheduling for Information Fresh-
ness and Synchrony: Drift-based Design and Heavy-Traffic Analysis,”
in Proc. WiOpt, 2017.

[9] J. Zhong, R.D. Yates, and E. Soljanin, “Two Freshness Metrics for
Local Cache Refresh,” in Proc. IEEE ISIT, 2018.

[10] I. Kadota, A. Sinha, and E. Modiano, “Optimizing Age of Information
in Wireless Networks with Throughput Constraints,” in Proc. IEEE
INFOCOM, 2018

[11] R. Talak, S. Karaman, and E. Modiano, “Optimizing Age of Informa-
tion in Wireless Networks with Perfect Channel State Information,” in
Proc. WiOpt,, 2018.

[12] N. Lu, B. Ji, and B. Li, “Age-based Scheduling: Improving Data
Freshness for Wireless Real-Time Traffic,” in Proc. ACM MobiHoc,
2018.

[13] AT&T Labs & AT&T Foundry, ”AT&T Edge Cloud (AEC) - White
Paper,” available at https://about.att.com/content/dam/innovationdocs/
Edge\ Compute\ White\ Paper\%20FINAL2.pdf

[14] Verizon, “The Internet of Things Will Thrive on 5G Tech-
nology,” available at https://www.verizon.com/about/our-company/5g/
internet-things-will-thrive-5g-technology

[15] R. Agrawal and V. Subramanian, “Optimality of Certain Channel Aware
Scheduling Policies,” in Proc. Allerton, 2002.

[16] A.L. Stolyar, “On the Asymptotic Optimality of the Gradient Schedul-
ing Algorithm for Multiuser Throughput Allocation,” Operations Re-
search, 2005.

[17] IBM ILOG CPLEX Optimizer, available at https://www.ibm.com/
analytics/cplex-optimizer

[18] C. Li, S. Li, Y.T. Hou, “A General Model for Minimizing Age of
Information at Network Edge,” in Proc. IEEE INFOCOM, 2019.

[19] R.L. Garham, D.E. Knuth, and O. Patashnik, “Concrete Mathematics,”
Addison-Wesley, 1989.

[20] A.S. Tanenbaum and A.S. Woodhaul, Operating systems: design and
implementation, Vol. 2. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[21] J. Sanders and E. Kandrot, “CUDA by Example: An Introduction
to General-Purpose GPU Programming,” Addison-Wesley Professional,
2010.

1475

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on March 24,2022 at 02:21:31 UTC from IEEE Xplore. Restrictions apply.

