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Abstract—Degree-of-Freedom (DoF) based models have been
widely used to study MIMO networks. To cancel interference,
the number of DoFs used in the state-of-the-art DoF models is
solely based on the number of interfering data streams. However,
by decomposing an interference into the eigenspace, we find that
signal strengths varies significantly in different directions for the
same interference link. In this paper, we exploited the difference
in interference signal strength in the eigenspace and differentiate
strong and weak interference signals via their singular values.
By introducing a concept of effective rank threshold, we propose
to use DoFs only to cancel strong interference in the eigenspace
based on this threshold while treating weak interference signals as
noise in throughput calculation. We explore a fundamental trade-
off between network throughput and effective rank threshold.
Using simulation results on MU-MIMO networks, we show that
network throughput under optimal rank threshold setting is
significantly higher than that under existing DoF IC models.
To ensure feasibility at the PHY layer, we present an algorithm
that can find Tx and Rx weights at each node that can offer our
desired DoF allocation.

I. INTRODUCTION

Degree-of-Freedom (DoF) based models are a powerful tool
to analyze MIMO’s capabilities in spatial multiplexing (SM)
and interference cancellation (IC) [1, 2]. By getting around
the complex matrix manipulation (intractable in most cases)
associated with each node’s Tx/Rx weights and channel ma-
trix, a DoF-based model can easily achieve resource allocation
for SM and IC with simple "+/-" arithmetic calculations. Due
to its simplicity and tractability, DoF-based models have been
widely used in the research community for modeling, analysis,
and optimization of MIMO networks [3–7].

Under a DoF-based model, a node’s DoF resource can be
used either for SM or IC, and the total number of available
DoFs at the node is limited by its number of antennas.
Existing DoF IC models require to consume DoFs to cancel all
interference in the channel, without differentiating interference
strength in different directions in the eigenspace. However, as
we shall see in the following motivating example, interference
signal strengths vary greatly in different directions in the
eigenspace on the same interference link, especially as the
number of antenna at a node becomes large and the channel
exhibits correlation. This motivates us to reconsider the IC
strategy in existing DoF models and explore a more efficient
IC strategy beyond the state-of-the-art.
A Motivating Example. Considering a simple two-cell
MIMO network shown in Fig. 1. There are two APs (AP1
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z11 z22H12
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Fig. 1: A motivating example with two APs and two users.

and AP2) and two users (u1 and u2). Suppose each node
(AP or user) is equipped with 12 antennas. AP1 transmits
z11 data streams to user u1 (marked with solid arrow lines)
which interfere with user u2 (marked with dashed arrow lines).
Likewise, AP2 transmits concurrently z22 data streams to user
u2. In this motivating example, we assume the interference
from AP2 to user u1 is negligible.1

Due to lack of rich multipath propagation and spatial separa-
tions, experimental studies showed that spatial channels within
a MIMO link are often correlated [8, 9]. As a result, the trans-
mit power from a node is generally not uniformly distributed in
all directions of the channel’s eigenspace. Consider the channel
matrix H12 in Fig. 1. Using Kronecker channel model [9], we
can write H12 as H12 = R1/2

tx HwR1/2
rx , where Hw is an 12× 12

random matrix with zero-mean i.i.d. complex Gaussian entries;
R1/2
tx and R1/2

rx are 12 × 12 square root matrices of the Tx
and Rx antenna correlation matrices, respectively. The (i, j)-th
element in the correlation matrix Rtx and Rrx is calculated as
ρ
|i−j |
tx and ρ |i−j |rx , where ρtx ∈ [0, 1) and ρrx ∈ [0, 1) represent

the levels of correlation between any two adjacent antennas
at the respective transmitter and receiver (linear array with
exponential correlation case [10]). For different values of ρtx
and ρrx , we can simulate the expectations of singular values
σ of H†

12H12, which we show in Fig. 2. It is easy to see
that for any given value of ρtx and ρrx , the expectations of
singular values vary significantly. Here, a high singular value
indicates that a large portion of AP1’s power is projected into
the direction of the corresponding singular vector. Likewise, a
close-to-zero singular value indicates a close-to-zero portion
of AP1’s power is projected into the direction of the corre-
sponding singular vector. When the values of ρtx and ρrx
increases (i.e., with increased channel correlation), more and

1Such weak interference will be considered later.
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Fig. 2: Expectations of singular values E[σ] under different
levels of correlation (ρtx and ρrx).
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Fig. 3: Total DoFs for SM and throughput performance as a
function of threshold setting (used to differentiate strong and
weak interferences). (a) Total number of data streams in the
network. (b) Network throughput.

more expectations of singular values diminish toward zero.2

Figure 2 suggests that the interference strength varies
significantly in different directions in its eigenspace. Under
traditional IC scheme (see, e.g., [3–7]), all interference from
AP1 to u2 shall be cancelled by either AP1 (Tx side, using z22
DoFs) or u2 (Rx side, using z11 DoFs). This approach does
not differentiate strong and weak interferences in different
directions and thus blindly cancels them all with precious
DoFs. But if we exploit the difference of interference power
strength in each direction, we could consider only cancelling
the strong interference with DoFs and treat the weak ones
just as noise. In other words, by exploiting the disparity in
interference strength, we could conserve precious DoFs from
cancelling the weaker ones. As shown in Fig. 2((c) and (d) in
particular), the vast majority interference power only appears
in the directions corresponding to the high singular values of
H12, which can be properly cancelled by using a small number
of DoFs. The remaining weak (small) interference power in
these figures may be better treated as noise instead of being
cancelled with precious DoFs. Although there may be some
throughput loss due to un-cancelled weak interference, the
DoFs savings could be used to transport more data streams
(SM), which is a better direction for making a trade-off in
DoF allocation. By judiciously exploiting the threshold used to
differentiate strong and weak interference, one could achieve a

2Apart from correlation, singular values can also be zero due to the presence
of “key-hole” effect [11].

better design objective (e.g., more data streams and/or higher
throughput) than blindly cancelling all interferences (weak or
strong) with DoFs, as in existing approaches [3–7].

To show the potential benefits of our idea, suppose we set
z11 = 12 in the example in Fig. 1. Following traditional IC
approach (i.e., no differentiation between strong and weak
interferences), AP2 cannot send any data stream to user u2
as there is no remaining DoF available at user u2 to cancel
interference from AP1. On the other hand, if u2 treats the
interference coming from AP1 in the direction corresponding
to the smallest singular value of H12 as weak interference and
does not use a DoF to cancel it, then it only needs to use
11 DoFs for IC from AP1 to u2 and use the remaining one
DoF to support one data stream transmission from AP2 to u2.
Following the same token, as more interferences from AP1
(corresponding to the smallest singular values) are treated as
weak interferences and thus not to be cancelled with DoFs,
more DoFs could be saved and be used to support SM from
AP2 to u2. As shown in Fig. 3(a), by increasing interference
threshold η (more on this notation in Section II) to differentiate
strong and weak interferences, more DoFs can be conserved
from cancelling fewer number of weak interferences at u2 and
more data streams (SM) can be sent from AP2 to u2. Fig.
3(b) shows the total network throughput (in bits/s/Hz) on all
data streams (from AP1 to u1 and AP2 to u2) as a function of
interference threshold η. Clearly, there is a trade-off between
number of DoFs that can be transported in the network and
total throughput. Under each ρ, there is an optimal knee point
that offers the best trade-off between interference threshold η
and total throughput.

The above motivating example captures the key idea of this
paper. As a major departure from existing approach for DoF
IC, we exploit the differences in interference signal strength
among different directions by examining singular values in the
eigenspace, and we propose to expend DoFs only to cancel
strong interference. Through optimal setting of interference
strength threshold, we can achieve the best trade-off between
the total number of DoFs for SM and network throughput. The
main contributions of this paper are the following:

• This is the first paper on DoF IC models that exploits
interference signal strengths in the eigenspace. Instead
of performing IC with DoFs on all directions in the
eigenspace as in existing DoF models, we advocate the
potential benefits of performing IC with DoFs only on
those directions with strong signals in the eigenspace.

• To differentiate strong and weak interference within an
interference link, we introduce the concept of effective
rank threshold. IC will only be performed for strong
interference corresponding to large singular values in the
eigenspace based on this effective rank threshold while
weak interference will be treated as noise in throughput
calculation.

• We study the fundamental trade-off between throughput
and effective rank threshold for a MU-MIMO network.
Through simulation results, we show that there exists an
optimal trade-off between throughput and effective rank
threshold. Further, the network throughput under optimal
effective rank threshold setting is considerable higher than
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Fig. 4: A general MU-MIMO network with multiple Tx nodes
and Rx nodes.

that under existing DoF IC models.
• To ensure the new DoF IC model is feasible at the PHY

layer, we propose an algorithm to determine weights for
all Tx and Rx nodes for a given DoF allocation. Through
an iterative process, our algorithm can set the weights for
all Tx and Rx nodes such that the interferences signals
beyond the effective rank threshold can be suppressed
nearly to zero, which is sufficient for decoding purpose.

II. DETERMINE EFFECTIVE CHANNEL RANK OF A LINK

Consider a general MU-MIMO network (see Fig. 4) with a
set KT of Tx nodes and a set KR of Rx nodes, respectively.
Each Tx node i ∈ KT and Rx node j ∈ KR are equipped
with NT

i and NR
j antennas, respectively. Under MU-MIMO, a

Tx node is able to transmit to multiple Rx nodes concurrently
while each Rx node can receive from at most one Tx node.
For a Tx node i ∈ KT, denote KR

i as the set of its Rx nodes.
For a Rx node j ∈ KR, denote s( j) as its Tx node.

A. Effective Rank of A Single Interference Link
We first differentiate strong and weak interferences on a

single interference link and use this differentiation to deter-
mine its effective rank. For a single interference link k → j,
instead of dealing directly with the fast fading channel matrix
Hk j ∈ C

NT
k
×NR

j , we take into consideration of transmit power
and path loss fading. Denote Pk as the transmit power at Tx
node k and Lk j as the path loss from Tx node k to Rx node
j. Define Yk j as an NR

j × NR
j symmetric matrix by:

Yk j =
PkLk j

NT
k

H†
k j

Hk j . (1)

In matrix Yk j , each entry represents the received interference
power on the corresponding channel on interference link
k → j. We will use Yk j to determine the effective rank of
interference link k → j.

To differentiate strong and weak interferences, we employ
the so-called best rank-r approximation of a matrix [13].
Under this approximation, Yk j is decomposed through a SVD
process and we use only the first r largest singular values and
their corresponding singular vectors as an approximation.

Fact 1 For a matrix A ∈ Cm×n(m ≥ n), denote Ã as a rank-r
matrix approximation of A with r ∈ {1, 2, · · · , n}. The optimal
solution to minimize approximation error

min
Ã∈Cm×n

����A − Ã
����
F
, s.t . rank(Ã) = r (2)

where | | · | |F denotes Frobenius norm, is

Ã =
r∑
i=1
σiuiv

†
i , (3)

where σi , ui , and vi are singular value, left and right singular
vectors respectively from the SVD of A, i.e., A = ∑n

i=1 σiuiv
†
i

and σ1 ≥ σ2 ≥ · · · ≥ σn. The minimum approximation error
(i.e., optimal objective value for (2)) is

√∑n
i=r+1 σ

2
i .

The SVD process in Fact 1 clearly shows the relative
strength of interferences in different directions. The larger the
singular value is, the stronger the interference in that direction.
Based on the desired level of approximation error, we can
approximate a rank-n matrix A by a rank-r matrix Ã with the
r-strongest singular values of A through (3).

To apply best rank-r approximation on a single interference
link Yk j , define θ as a threshold for singular values and denote
rk j as the effective channel rank of Hk j . Then rk j is given by

rk j =

NR
j∑

l=1
�
{
σl(Yk j) ≥ θ

}
, (4)

where σl(Yk j) is the l-th singular value based on SVD of Yk j ,
and �{event} is an indicator function, which is 1 if event is
true and 0 otherwise.

B. Interference Threshold at a Rx Node

Note that in a network with a set KT of Tx nodes and a
set KR of Rx nodes, the interference threshold θ in (4) should
be dependent upon the Rx node of this interference link. This
is because the received power (from its intended transmitter)
differs at each Rx node. As an example, consider Rx nodes
j and l in Fig. 4. Rx node j is closer to its (intended) Tx
node i than Rx node l to its (intended) Tx node k. For the
same transmit power at i and k, Rx node j will receive a
higher signal power (from its intended transmitter) and could
thus tolerate a stronger interference. Then, for the interference
links at Rx node j (k → j and m → j), the threshold used
to differentiate strong and weak interference should be larger
than that used to differentiate stronger and weak interference
on interference links (i → l and m → l) for Rx node l. Based
on the above discussion, for a receive node j, denote θ∗j as
the threshold for singular values on its interference link. Then
we should have θ∗j > θ∗l .

In this paper, instead of optimizing the settings of θ∗j for
each individual Rx node j based on its (intended) received
power level at Rx node j, we introduce a common scaling
factor η across all Rx nodes to normalize its received power
and only optimize the setting of this common scaling factor
for the entire network. We define η as follows:

θ∗j = η
Ps(j)Ls(j)j

NT
s(j)

. (5)

Based on this definition of common scaling factor η, the
effective rank rk j of Hk j can be determined by the number
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of Yk j’s singular values that are greater than or equal to the
threshold η Ps( j)Ls( j) j

NT
s( j)

. That is

rk j =
N j∑
l=1

�

{
σl(Yk j) ≥ η

Ps(j)Ls(j)j

NT
s(j)

}
, k ∈ KT, j ∈ KR, j � KR

k .

(6)
Note that any negligible interference for IC will be treated

as noise in the throughput calculation (see Section IV).

C. Effective Rank of An SM Link

For SM from node i to node j (intended transmission), the
effective channel rank of Hi j can be determined by

ri j =

NR
j∑

l=1
�

{
σl

(
H†

i jHi j

)
≥ θSM

}
, i ∈ KT, j ∈ KR

i , (7)

where θSM is the rank threshold for singular values on SM
link i → j. Note that the DoF savings by exploiting strong
and weak interference can be made available for SM (more
independent data streams) or diversity, both of which have
the potential to increase the throughput. In this paper, for
simplicity and focusing our attention on IC with DoF on
interference links, we do not explore best SM-diversity trade-
off. Instead, we will only pursue SM by transmitting more
data streams as long as we have enough DoFs and assume
θSM is a given constant throughout the paper.

III. IC BASED ON EFFECTIVE CHANNEL RANK

In the last section, we showed how to differentiate strong
and weak interferences at a Rx node by setting a threshold for
singular value and use this threshold to determine effective
channel rank. In this section, we show how to perform IC (for
strong interference only) in a MU-MIMO network based on
this effective channel rank.

Note that DoF allocation for IC cannot be done arbitrarily
and must follow certain rules to be feasible. By “feasibility",
we mean that all the strong interference can be cancelled at
the PHY layer. Section V will present details on PHY layer
feasibility for our DoF allocation.

If DoF allocation for IC and SM is feasible at the PHY layer,
then multiple data streams can be transmitted concurrently
while all strong interference under best rank-r channels are
cancelled. The remaining un-cancelled weak interference will
be treated as noise and included in the throughput calculation
in Section IV.

We employ the DoF-based IC model [12] to perform DoF
allocation. In [12], the rank of a channel is assumed to be
given a priori instead of being a function of effective rank
threshold in this paper.

A. Modeling of DoF Constraints

DoF Constraints for SM For an intended transmission from
Tx node i to Rx node j, denote the number of data streams on
this link as zi j . Denote xi(t) as a binary variable to indicate
whether Tx node i is active or not at time t, i.e., xi(t) = 1 if
Tx node i is transmitting at time t and 0 otherwise. Likewise,

denote yj(t) as a binary variable to indicate whether a Rx
node j is active or not at time t, i.e., yj(t) = 1 if Rx node j
is receiving at time t and 0 otherwise.

If Tx node i is transmitting, then the total number of data
streams transmitted to different receivers (under MU-MIMO)
cannot exceed the total number of antennas at node i (i.e.,
NT
i ). We have

xi(t) ≤
∑
j∈KR

i

zi j(t) ≤ NT
i xi(t), i ∈ KT. (8)

Similarly, if a Rx node j is active at time t, then the total
number of DoFs used for reception (from only one transmitter
under MU-MIMO) cannot exceed the number of antennas at
node j (i.e., NR

j ). We have

yj(t) ≤ zi j(t) ≤ NR
j yj(t), i ∈ KT, j ∈ KR

i . (9)

Taking into consideration of the effective rank of the SM
link i → j, the number of data streams that can be sent
on this SM link cannot exceed the link’s effective rank (see
Section II). We have

zi j(t) ≤ ri j(t), i ∈ KT, j ∈ KR
i . (10)

For a Rx node l that is not Tx node i’s intended receiver,
i.e., l � KR

i , the transmission at Tx node i is considered
interference (instead of SM) and there is zero data streams
over this link. We have

zil(t) = 0, k ∈ KT, l ∈ KR, l � KR
i . (11)

DoF Constraints for IC For interference from Tx node k
to Rx node j, denote dT

k j
(t) as the number of consumed DoFs

at Tx node k and dR
k j
(t) as the number of consumed DoFs at

Rx node j that are needed to cancel this interference. Based
on [12], a collaborative DoF consumption at both interfering
Tx node k and Rx node j is the most efficient approach for IC
when the rank of the interference channel is not full, as in our
case. Denote 1T

k j
and 1R

k j
as two binary variables to indicate

whether Tx node i (or Rx node j) consumes any DoFs for IC
from k to j. That is, 1T

k j
= 1 if Tx node k consumes DoFs

for IC from k to j, 1T
k j
= 0 otherwise; 1R

k j
= 1 if Rx node j

consumes DoFs for IC from k to j, 1R
k j
= 0 otherwise.

If xk(t) = 1 and yj(t) = 1, then

dT
k j(t)1

T
k j(t) + dR

k j(t)1
R
k j(t) =

min
⎧⎪⎪⎨⎪⎪⎩1

R
k j(t)

l�j∑
l∈KR

k

zkl(t) + 1T
k j(t)

i�k∑
i∈KT

zi j(t), rk j(t)
⎫⎪⎪⎬⎪⎪⎭ ,

(12a)

(
1T
k j(t), 1

R
k j(t)

)
� (0, 0), k ∈ KT, j ∈ KR (12b)

That is, the interference from k to j can be cancelled by
consuming DoFs on Tx node k only (when

(
1T
k j
(t), 1R

k j
(t)

)
=

(1, 0)), Rx node only (when
(
1T
k j
(t), 1R

k j
(t)

)
= (0, 1)), or both

Tx and Rx nodes (when
(
1T
k j
(t), 1R

k j
(t)

)
= (1, 1)). Constraint

(12) can be reformulated as mixed integer linear (MIL) con-
straints, which is omitted here to conserve space.
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DoF Constraints at A Node A node can use its DoFs
for both SM and IC, as long as the total number of consumed
DoFs does not exceed the total available DoFs at the node. We
consider DoF constraints at Tx node and Rx node separately.
If node i is an active Tx node, we have

if xi(t) = 1, then
∑
j∈KR

i

zi j(t)+
∑
l∈KR

dT
il(t)1

T
il(t) ≤ NT

i , i ∈ KT.

(13)
If node j is an active Rx node, we have

if yj(t) = 1, then
∑
i∈KT

zi j(t)+
∑
k∈KT

dR
k j(t)1

R
k j(t) ≤ NR

j , j ∈ KR.

(14)
For constraint (13), it can be reformulated by incorporating

binary variable xi(t) into the expression as follows:∑
j∈KR

i

zi j(t) +
∑
l∈KR

dT
il(t)1

T
il(t) ≤ NT

i xi(t) + (1 − xi(t))B, i ∈ KT,

(15)

where B is a large constant, which can be set as B =∑
i∈KT NT

i +
∑

j∈KR NR
j to ensure that B is an upper bound

of
∑

l∈KR dT
il
(t).

Similarly, constraint (14) can be reformulated as follows:∑
i∈KT

zi j(t)+
∑
k∈KT

dR
k j(t)1

R
k j(t) ≤ NR

j yj(t)+(1−yj(t))B, j ∈ KR.

(16)
Constraints (15) and (16) can be reformulated as MIL con-
straints, which are omitted here to conserve space.

B. An Example with Numerical Results

As an example to illustrate the relationship between the
total achievable data streams (SM) in the network and η
(the common scaling factor to differentiate strong and weak
interference and effective channel rank), consider the simple
MU-MIMO network in Fig. 5. Suppose our objective is to
maximize the sum of log of all data streams (SM) in the
network. Then we have the following optimization problem:

max
∑
i∈KT

∑
j∈KR

log(zi j)

s.t. SM constraints:(8) − (11);
IC constraints:(12);
Node’s DoF constraints:(15), (16),

where zi j, dT
k j
, dR

k j
, 1T

k j
and 1R

k j
are variables while all other

symbols are constants.
As discussed earlier, the constraints in the above formulation

can be reformulated into MIL constraints. However, the objec-
tive function (sum of log) remains non-linear. Fortunately, the
sum of log objective can be reformulated (along with the MIL
constraints) as a second order conic program (SOCP) [14].
Off-the-shelf optimization tools, such as Gurobi, can solve this
SOCP (with integer variables) optimally.

Some numerical results follow. Suppose the six Tx nodes in
Fig. 5 are uniformly generated in a 400 m × 400 m space. For
each Tx node, there are two Rx nodes uniformly generated
with a radius of 70 m of the Tx node. Each Tx node and
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Fig. 5: An instance of MU-MIMO network topology.
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Fig. 6: Effective ranks on interference links versus rank
threshold scaling factor η.

Rx node are equipped with 16 and 12 antennas, respectively.
Assume a fixed (constant) transmit power for each Tx node i,
with SNR Pi/n2

0 = 80 dB, where n2
0 is the white noise power.

Path loss is modeled as Li j = D−3
i j , with Di j being the distance

between Tx node i and Rx node j. Fast fading is modeled
by Kronecker channel model, i.e., Hi j = R1/2

tx HwR1/2
rx (i ∈

KT, j ∈ KR), where Hw is an NT
i × NR

j random matrix
with zero-mean i.i.d. complex Gaussian random numbers. The
(k, l)-th element of the correlation matrix Rrx and Rtx is taken
here as ρ |k−l | with ρ ∈ {0.2, 0.4, 0.6}. The rank threshold for
SM links θSM is set to be 1.

Fig. 6 shows the effective ranks on three representative links
(e → n, e → k and e → g) as a function of rank threshold
scaling factor η (in log scale). We draw η in log scale since
singular value distribution is more like a log-shape rather than
a linear shape (see Fig. 2). As expected, all effective channel
ranks are decreasing steadily. For ρ = 0.2 shown in Fig. 6(a),
note that ren remains full rank until η becomes greater than 0.4
while rek and reg starts to decrease when η starts to increase
from 0. This is because Rx node n is close to the interfering
Tx node e than k and g and thus experiences much stronger
interference from Tx node e than k and g. On the other hand,
reg drops very fast because Rx node g is further away from Tx
node e than n and k. When η is greater than 0.3, reg = 0 and
Rx node g is considered out of interference range of Tx node
e. For ρ = 0.4 shown in Fig. 6(b), effective ranks have the
similar trend but drop faster than those when ρ = 0.2, since
the higher channel correlation causes interference strength
more concentrated in fewer directions (see Fig. 2). Similar
conclusion can be found for ρ = 0.6, and we omit the figure
to conserve space. Clearly, the setting of rank threshold scaling
factor η has different effect on different interference links
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Fig. 7: Total number of data streams in the network (averaged
over 10 instances).

in terms of effective rank determination. Fig. 7 shows total
number of data streams in the network from our optimal
objective (averaged over 10 random network instances similar
to Fig. 5). As shown in this figure, for a given ρ, the total
number of data streams steadily increases from 24 to 96 and
then flattens out. This is because the higher the rank threshold
scaling factor η, the lower the effective channel ranks on
interference links in the network. As a result, fewer DoFs
are needed to cancel interferences and more DoFs can be
allocated for SM. When η is greater than 10, the number of
data streams cannot be further increased, either there is no
room for further decrease of effective ranks on interference
links (all effective ranks are 0), or further decrease of effective
ranks on interference links will not improve objective value,
due to the bounds on effective ranks on SM links. We also
observe that for the same rank threshold η, larger number of
data streams can be achieved for higher channel correlation
level, due to lower effective ranks.

The above example shows the impact of effective rank
threshold setting on the number of data streams that can
be transported in the network. However, more number of
data streams in the network do not necessarily mean higher
throughput (in bits/s/Hz), due to un-cancelled interference
(considered as noise) and channel hardening effect. In the next
section, we investigate the impact of effective rank threshold
setting on achievable throughput in the network.

IV. THROUGHPUT CALCULATION AND OPTIMAL
THROUGHPUT-η TRADE-OFF

In this section, we calculate the actual throughput for a given
DoF allocation for SM and IC. Then we explore the trade-off
between throughput maximization and interference threshold
scaling factor η directly.

A. Throughput Calculation

Assume a DoF allocation for SM and IC is feasible for a
MU-MIMO network. Then the network throughput is the sum
of the throughput achieved on each data stream under SM. So
the key question is how to calculate throughput for each SM
stream.

For each data stream, we can calculate its throughput by
finding its SINR and then apply the Shannon capacity formula.
The only subtlety here is that the SINR calculation should
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Fig. 8: Performance of network throughput under increasing
threshold η. (a) Kronecker model used for both intended and
interference links. (b) Kronecker model used for interference
links and Rayleigh model used for intended links.

include all interferences that this data stream is suffering from,
which includes all un-cancelled interference at PHY layer and
white noise. To do this, we need to go to the PHY layer
and work with the Tx and Rx vectors for each data stream.
Denote Ui ∈ CNT

i ×zi∗ as the weight matrix at Tx node i
with zi∗ outgoing SM data streams and Vj ∈ C

NR
j ×z∗ j as

the weight matrix at Rx node j with z∗j incoming SM data
streams. In Section V, we will show one implementation on
how to derive Ui and Vj based on a DoF allocation while
guaranteeing PHY layer feasibility. For now, let’s assume
the Ui’s and Vj’s are already found. Define the partition
of matrix Ui as

[
Ui, j1 Ui, j2 · · · Ui, jM

]
, where j1, j2, · · · , jM

are Tx node i’s M recipients, i.e., { j1, j2, · · · , jM } = KR
i ,

then Ui, j1,Ui, j2, · · · ,Ui, jM are sub-weights corresponding to
Rx nodes j1, j2, ..., jM , with dimensions NT

i × zi j1, N
T
i ×

zi j2, · · · , N
T
i × zi jM (zi∗ =

∑M
n=1 zi jn ), respectively.

For ∀ j ∈ KR
i , the signal-to-interference-plus-noise ratio

(SINR) of f -th stream in the link i → j is then given by

SINR f
i j =

γ
f
i j

V[∗ f ]†
j QjV[∗ f ]

j − γ
f
i j

, (17)

where (·)[∗ f ] is the f -th column of (·) and

γ
f
i j = PiLi jV[∗ f ]†

j H†
i jU

[∗ f ]
i, j U[∗ f ]†

i, j Hi jV[∗ f ]
j ,

Qj = n2
0IN j +

∑
k∈KT

PkLk jH†
k j

UkU†
k
Hk j .

(18)

Finally, the network throughput in bits/sec/Hz is given by

C =
∑
i∈KT

∑
j∈KR

i

zi j∑
f=1

log2

(
1 + SINR f

i j

)
. (19)

B. Optimal Throughput-η Trade-off

From the network throughput expression (19), it is evident
that there exists a trade-off between throughput and η. When
η increases, more DoFs become available to support a larger
number of SM data streams zi j (as shown in Section III) and
we have a larger value of zi j in (19) to increase throughput.
On the other hand, higher η means more weak interferences
are not cancelled and left in the network. This will decrease
the SINR term in (19) and decrease throughput. Thus, we
have a trade-off. Unfortunately, due to the highly non-convex
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nature of (19), a closed-form expression to explore optimal
throughput-η trade-off remains unknown. In the rest of this
section, we use simulation study to understand this throughput-
η trade-off and gain insights.

We first use the same MU-MIMO network setting in
Section III-B. 10 instances are randomly generated and we
evaluate the average performance. Fig. 8(a) shows network
throughput vs. η under different channel correlation levels ρ.
Note that η = 0 stands for traditional DoF IC which uses
DoFs to cancel interference indiscriminately in all directions
in the eigenspace. For ρ = 0.2, we can see network throughput
keep ascending until threshold η = 0.3, owing to more data
streams are supported (see Fig. 7) while un-cancelled weak
interference impacts are insignificant (Section V will show the
interference level versus η). However, if we keep increasing
η, throughput decreases due to un-cancelled interference.
Throughput under η = 0.6 can be as good as that with
traditional IC (i.e., η = 0). Nevertheless, by aggressively
increasing η larger than 0.6, even though more DoFs can be
made available for SM, un-cancelled interference will play a
greater role and will result in worse performance than tradition
IC. For ρ = 0.4 and 0.6, we can see a similar trade-off. For
this network setting, the optimal effective rank threshold η
should be set to η = 0.3, 0.2 and 0.12 for ρ = 0.2, 0.4 and
0.6, respectively. The peak throughput achieved at optimal
η is 22.3%, 16.25%, 12.71% greater than that achieved at
η = 0 for ρ = 0.2, 0.4 and 0.6, respectively. We can also
note that with higher channel correlation level ρ, network
throughput becomes lower. This is because high channel
correlation also hinders SM capability, which results in low
overall performance in this network setting.

In the scenarios where interference link presents high cor-
relations (e.g., high correlation caused by key-hole effect)
while intended link has low correlations, our rank-based IC
can be even more beneficial. For Fig. 8(b), fast fading for
interference links are modeled by Hi j = R1/2

tx HwR1/2
rx (i ∈

KT, j ∈ KR, j � KR
i ), with ρ ∈ {0.4, 0.6, 0.8}, while fast

fading for intended links are modeled by Rayleigh channel,
i.e., Hi j = Hw (i ∈ KT, j ∈ KR

i ). As shown in Fig. 8(b),
the network throughput has a similar trend to Fig. 8(a) as
we increase effective rank threshold η. However, we observed
that for a higher channel correlation level ρ at interference
links, we obtained much higher throughput gain by setting
optimal effective rank threshold η. Specifically, the peak
throughput achieved at optimal η is 15.82%, 24.44%, 50.48%
greater than that achieved at η = 0 for ρ = 0.4, 0.6 and
0.8, respectively. This is because well-conditioned intended
channels have the capability to carry more data streams for
higher throughput, thus can fully take advantage of exploiting
interference signal strength in the eigenspace on correlated
interference channels. The trade-off shown in Fig. 8 reaffirms
that cancelling interference in all directions is not efficient in
terms of throughput performance.

V. PHYSICAL LAYER FEASIBILITY

In Section IV we assumed feasible weight matrices Ui and
Vj at the PHY layer are given a priori corresponding to a

particular DoF allocation. In this section, we show how to
find such weight matrices at each node.

As expected, finding these feasible at the PHY layer for
a MU-MIMO network is not trivial. First and foremost, the
Tx weights and Rx weights are interdependent on each other.
That is, the Tx weights for IC depend on the corresponding
Rx weights, while the Rx weights for IC also depend on the
corresponding Tx weights. There is no established guideline
in the literature on how to find feasible weight matrices
corresponding to a DoF allocation such that interference can be
cancelled completely. Second, since we are exploring effective
channel ranks in this paper and some weak interferences are
not cancelled by DoFs, one cannot guarantee the existence
of feasible Ui and Vj to achieve perfect (100%) interference-
free transmission. This makes finding feasible weight matrices
even more challenging.

In the rest of this section, we design an iterative algorithm
that is able to realize the DoF allocation (based on the DoF
solution for a specific objective as shown in Section III), where
the strong interferences in best rank-r channels are “almost"
cancelled. By “almost", we mean the remaining signal strength
in the directions of strong interferences is close to zero.

A. Basic Idea and Algorithm Design
The main idea of our algorithm is as follows. For a given

DoF allocation, we have the data stream allocation (i.e. zi j) on
each SM link in the network, which we can use to determine
the dimension for each Ui and Vj . Then, under the original
channel matrix Hi j , to cancel all the inter-stream and inter-
node interference, we must have

U†
i

[
Hi j1Vj1 Hi j2Vj2 · · ·

]
= Λzi∗, i ∈ KT, j1, j2... ∈ KR

i , (20)

U†
i Hi jVj = 0, i ∈ KT, j ∈ KR, j � KR

i . (21)

Although (20) can always be satisfied for all SM links, (21),
however, cannot be satisfied for all i ∈ KT, j ∈ KR, j � KR

i
if there are not enough remaining DoFs to cancel those
weak interference on some links. Recognizing that not all
interference can be perfectly cancelled, we focus our goal on
cancelling all the strong interference, which is based on the
best rank−r approximate channel H̃i j =

∑ri j
l=1 σlulv

†
l

via SVD
of Hi j . That is, we want to have

U†
i H̃i jVj = 0, for i ∈ KT, j ∈ KR, j � KR

i . (22)

The weak interference that is not cancelled will reduce net-
work throughput and will be taken into account in throughput
calculation (as we did in Section IV).

(20) and (22) constitute a system of bilinear equations and
a general solution to bilinear equations remains unknown. In-
stead of finding a feasible solution to (20) and (22), we propose
to minimize the LHS of (22) for all i ∈ KT, j ∈ KR, j � KR

i ,
subject to (20). Denote ΔLI as the leakage interference in the
network,3 which is defined as

ΔLI =
∑
i∈KT

j�KR
i∑

j∈KR

PiLi j

������U†
i H̃i jVj

������2
F
. (23)

3Incidentally, a similar definition of leakage interference involving only
channel matrix Hi j is given in [15, 16].
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The problem to solve is to minimize ΔLI subject to (20). To
this end, we propose a simple yet effective approach to address
the dependency between Tx weight matrices Ui and Rx weight
matrices Vj by updating each in an alternating fashion (i.e.,
fixing Ui and update Vj and vice versa). Specifically, at
each iteration, Tx weight matrices Ui are optimized first
with given Rx weight matrices Vj and channel information.
Then we optimize Rx weight matrices Vj with given Tx
weight matrices Ui and channel information. For each weight
matrix optimization, the weight matrix is updated by solving
a minimization problem with the objective ΔLI and updated
set of constraints. The iteration terminates when we find no
improvement following a number of consecutive iterations.

To conserve space we offer the key steps of the algorithm
here. Details can be found in [17].

• Step 1: Initialization. Initially all the Tx and Rx weight
matrices, which can be set arbitrarily but have to be full
rank with dimension NT

i × zi∗ and NR
j × z∗j , respectively.

• Step 2: Tx weights optimizing. In this step, channel
information H̃i j and Rx weight matrices Vj are given.

Denote ΔT
LI,i =

∑j�KR
i

j∈KR PiLi j

������U†
i H̃i jVj

������2
F

as the leakage
interference at Tx node i. It follows that min ΔLI can
be solved separately by solving |KT | independent sub-
problems minUi Δ

T
LI,i , i.e., one sub-problem for each Tx

node. Then the Tx weight matrix Ui is updated by solving
the following optimization problem:

min
Ui ∈C

NT
i
×zi∗

ΔT
LI,i =

j�KR
i∑

j∈KR

PiLi j

������U†
i H̃i jVj

������2
F
. (24)

• Step 3: Rx weights optimizing. Similar to optimizing Tx
weight matrices, we have |KR | independent sub-problems
for |KR | Rx nodes, and each Rx weight matrix Vj is
updated by solving the following optimization problem:

min
Ui ∈C

NT
i
×zi∗

ΔT
LI,i =

j�KR
i∑

j∈KR

PiLi j

������U†
i H̃i jVj

������2
F
. (25)

Step 2 and Step 3 will be performed iteratively until
there is no improvement for W consecutive iterations, i.e.,
ΔLI(t − w − 1) − ΔLI(t − w) < ε,w = 0, 1, ...,W − 1 is met
for given convergence threshold ε .

• Step 4: Separating desired data streams. To separate
desired data streams within an SM link (i.e., to satisfy
(20)), standard linear ZF design can be employed.

• Step 5: Power allocation. Equal power allocation for
every data streams is applied subject to power constraints
Tr(UiU†

i ) = 1,Tr(VjV†
j ) = 1.

While the algorithm minimizes leakage interference at every
iteration and is guaranteed to converge, convergence to global
minimum is not guaranteed due to the non-convex nature.
Nevertheless, our own experience shows that the solution in
each iteration is in closed form and the algorithm typically
converges by less than 50 iterations. So this algorithm is
computationally fast and effective for practical purpose. Nu-
merical results for performance are presented in the following
subsection.
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Fig. 9: Average percentage of residual strong interference and
total interference in original signal space.

B. Performance

In this section, we provide numerical results to show that by
applying this algorithm, the interferences which are intended to
be cancelled (i.e., strong interferences under best rank-r chan-
nels) can be appropriately suppressed almost to zero. After

applying the proposed algorithm,
∑i�s(j)

i∈KT PiLi j

������U†
i H̃i jVj

������2
F

indicates the sum of residual strong interference power at
the Rx node j after IC, which is ideally to be 0, while∑i�s(j)

i∈KT
Pi

NT
i

Li j

����Hi j

����2
F

indicates the interference power in the
original signal space without IC performed. Then the average
ratio of residual strong interference in the original signal space
over all Rx nodes is defined as

δ̃ave =
1��KR
�� ∑
j∈KR

∑i�s(j)
i∈KT PiLi j

������U†
i H̃i jVj

������2
F∑i�s(j)

i∈KT
Pi

NT
i

Li j

����Hi j

����2
F

. (26)

For analysis, we also evaluate the total interference level
including un-cancelled interference, for which the original
channels should be considered. The average ratio of residual
total interference in the original signal space is defined as

δave =
1��KR
�� ∑
j∈KR

∑i�s(j)
i∈KT PiLi j

������U†
i Hi jVj

������2
F∑i�s(j)

i∈KT
Pi

NT
i

Li j

����Hi j

����2
F

. (27)

Considering the same network setting as Section IV with
ρ = 0.4, we set ε = 0.01 and W = 5, and take average
of simulation results over 10 instances. Fig. 9 shows our
algorithm keeps the strong interferences that are to be can-
celled at a very low level (within 2% in the original signal
space without IC performed), while the total interference level
increases as more weak interferences are not being cancelled
by DoFs. More importantly, Fig. 9 suggests that when η is
small (e.g., η ≤ 0.3), by not cancelling weak interference, the
gap between total interference level and strong interference
level is small (within 6% when η ≤ 0.3). Thus, leaving some
weak interferences un-cancelled by DoFs will not cause much
interference. However, when η is large, the different between
total interference and strong interference could become large.
Here, un-cancelled interference may cause considerable per-
formance loss in network throughput. Such trade-off has been
validated in Section IV.
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VI. RELATED WORK

There have been active research activities on DoF-based
IC in MIMO networks. However, none of the existing DoF
models differentiate strong and weak interference in different
directions in the eigenspace per interference link, as we have
done in this paper.

In Information Theory (IT) community, DoF characteriza-
tions are mainly based on idealized channel models, i.e., either
full rank (e.g. [18, 19]) or rank-deficient with zero singular
values (e.g. [20, 21]). Such idealized channel rank models do
not exactly capture what happens in reality, where singular
values for weak interference are not exactly zero. As a result,
they cannot accurately represent channel behavior in the real
world.

In networking community, most existing DoF-based models
assume that channels are of full rank [3–7]. To identify inter-
ference footprint, the so-called protocol model is widely used
[3–7], where a Rx node inside a disc is considered interfered
and would require DoF for IC while a Rx node outside the
disc is considered to experience negligible interference (i.e.,
no IC is needed). The main issue with this model is that, for
the same Rx node (inside the interference range), it does not
differentiate interference strength in different directions in the
eigenspace and thus would require DoFs to cancel interference
in all directions (for the same Rx node) even though the signal
strength in certain directions may be very weak and does
not require DoFs to cancel. The weakness of these models
is further amplified when the number of antennas at Tx/Rx
nodes becomes large and channels exhibit high correlation.
In contrast, instead of using a disc (or interference range), we
differentiate interference strength by examining singular values
in the eigenspace regardless of the location of the Rx node.
Strong interferences (corresponding to large singular values)
are cancelled by DoFs while weak interferences (correspond-
ing to small singular values) are treated as noise in throughput
calculation. This approach combines the best of the simplicity
of DoF model and the accuracy of the physical model.

VII. CONCLUSIONS

This paper exploited interference signal strengths among
different directions in the eigenspace to achieve efficient DoF
IC for MU-MIMO networks. By decomposing an interference
into its eigenspace and introducing an effective rank threshold
to differentiate strong and weak interference, we showed that
precious DoFs can be conserved if we only use DoFs to
cancel those strong interference signals in the eigenspace.
We investigated the trade-off between network throughput and
effective rank threshold and showed that network throughput
under the optimal effective rank threshold is significantly
higher than that under existing DoF IC models. To ensure
feasibility at the PHY layer, we presented an algorithm that
can find Tx and Rx weights at each node that can offer our
desired DoF allocation.
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